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II. REPORT

A. Statement of the Problem Studied

The problem we proposed to investigate is about various electronic pro-

properties related to point defects in the HglxCd Te alloy system. Since Q

the Hgl_xCdxTe has substitutional randomness as an alloy crystal, the

effects of the alloy fluctuational potential on the energy gaps and

defect levels are investigated in detail. The conduction band edges for

the Igl xCd Te alloy are known to be nonparabolic. The effect of non-

parabolicity on shallow donor levels, as well as on electronic transport

are studied. We have also looked into the natures of electronic states

associated with native defects in Hgl_xCdxTe, especially those with Hg

vacancies. An interesting phenomenon about the mobility of the Hgl_xedxTe

near zero band gap is also studies with experimental results.
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B. SU*1MY OF THE NST IMPORTANT RESULTS

a. Alloy effects in Hgl_xCdxTe

A large nunber of investigations has been directed to alloy effect in

solids. Most of them are still qualitative. Only a few of them are for

the II-VI or III-V compound alloys. An important result from our study is

that the alloy fluctuation potential in HgCdTe system (and in general for

other semiconductor alloys) can be calculated from a superposition of

pseudopotentials of each atomic species defined in the parent compounds.

This approach is well known in regular crystals. However, the alloy

fluctuation potential is the small differences between the pseudopotentials

of each atomic species, which are usually not defined to great absolute

accuracy. But it turns out that if a consistent procedure to obtain the

pseudopotential parameters for parent compounts is adopted, the result is

very satisfactory. Furthermore, the effect of alloy fluctuation potential

can be calculated by a perturbation theory based on the virtual crystal

approximation (VCA). It is known, especially for metal alloys, that for

many alloy systems such a simple approach for alloy potential is not valid

due to the self-consistent requirement on the potential. In that case, the

coherent potential approximation (CPA) is claimed to be a better scheme. We

found for Hgl_xCdxTe, the usual perturbation theory is very good. This is

attributed to the great band width of HgCdTe and the weak perturbation

introduced by the substitutional disorder. A test of our theory has been

carried out by computing the alloy broadening of the bound exciton lines in

Hg0.52Cd0 .48Te. Our theoretical value of broadening agrees quite well with

-4-
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experimental results. In contrast, one recent CPA calculation on alloy

broadening of exciton lines in alkali halides found line widths 10-20

times smaller than the experimental data. The details of this test will

be published. The theory is applied to the alloy broadening of defect

levels in HglxCdxTe and band gap bowing in Hgl_xCdxTe. These are
X X

published as listed in Section III.C

b. Native Defects in Hg, xCdxTE

Hg vacancies in Hgl_xCdxTe has long been suspected to be responsible for

p-type behavior in some prepared material. Many detailed investigations

have been carried out for the single vacancy in Si, some for vacancies in

III-V compound, but few for the II-VI compound, the cation vacancy in II-VI

compound is in fact simpler than that in Si or III-V compound, because the "

introduced perturbation is weaker.

We have carried out intensive calculation for the Hg vacancy and antisites

based on the generalized effective mass approximation. The ideal vacancy

has been treated by empirical tight binding method (Swartz, Daw and McGill,

1981). We approximate the ideal Hg vacancy in the VCA by the ionic model

potential screened by the k-dependent dielectric function. A self-

consistent interaction is carried out for the case of binding two holes.

The hole-hole interaction between the s envelope functions (which are expanded

in 21 Gaussian type orbitals) is screened by the k-dependent dielectric

function. The other interactions with the d envelope functions (also in 21

GTOs) are screened only by the dielectric constant in order to make the

calculation tractable. We find that the first and second hole ionization

, . , . * °°j• - .. o . - . -. . -. -..- . . . - . -. ..... .- . . . . --.. . . . . .. "
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energies are 20 and 35 meV respectively for X = 0.25, and 47 and 86 meV

respectively for X = 0.48. The antisite double acceptor Ga has been
As

observed recently in GaAs (K.R. Elliott, et al., 1982) with the first __

and second ionization energies being 77 meV and 230 meV, and our model

obtains results within 60% accuracy. This agreement established the

validity of the theory for double acceptor. Since the Jahn-Teller

distortion will only further lower the level, we conclude that the Hg

vacancies are shallow acceptors for X < 0.5. Self consistent calcula-

tions have also been carried out for the antisite CdTe . Our results

indicate that the first hole ionization energy is 1.47 eV for X 0.48

and 2.38 eV for X ; 1. The results suggest that the acceptor levels of

neutral CdTe antisite are inactive and also that the ideal anion vacancy

is inactive. The Teed antisite is currently speculated to be a major

defect in nonstoichiometric p-type sample (C.D. Jones et. al., (1982).

Our calculation using the r valley indicated that Tecd is a shallow

double donor. However, states composed of L valleys may provide aeep

donor levels as suggested by our calculation of CdTe.

The details of these findings are presented in published papers. Some

of the yet unpublished results are put in the appendixes.
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APPENDIX A I...

Chapter III

SELF-CONSISTENT GEMT OF DOUBLE ACCEPTORS

3.1 THE CATIONIC VACANCIES IN MERCURY CADMIUM TELLURIDE

3.1.1 Introduction and Experimental Data

HgCdTe is an important II-VI compound alloy, and has been known

as a good candidate for far-infrared detectors. The usefulness comes

from the linear variability of the bandgap E7 with x, which is the mo-

lar concentration of CdTe in the alloy. The bandgap varies from -0.3

eV ( semi-metal) for HgTe to 1.6 eV for CdTe. The bandstructure for

each x can be calculated from pseudopotential method based on the

Virtual Crystal Approximation (VCA)'""'' 2 . As an example, the

band structures of CdTe and HgTe are shown in Fig. 3.1.

Elliot, et al", reported electrical transport and photoluminescence

(PL) measurements for uncompensated p-type HgCdTe. In the electri-

cal measurement, the acceptor ionization energy E_ ranged from 15 to F7

22 meV for x in the range 0.26 to 0.34; and from the PL measure-

ment, EA ranged 10-*-16 meV for x=0.30^-0.34 and 25 meV for x=0.50.

Scott, Stelzer and Hager' 1 measured a p-type compensated Hg d, Ve

and obtained the acceptor level to be 14±1 meV. They did not give

the nature and source of this p-type properties. Hunter and McGill

did luminenscence measurements on HgCdTe alloys, and estimated that
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the acceptor binding energies in x=0.32 and x=0.48 materials are 14.0 r

t.0 and 15.5±2.0 meV. This impurity was thought to be the Hg va-

cancy. However, during sample preparation, the sample was gold

plated and annealed in Hg vapor. This process could dope the crys-

tals with Au and reduce the number of Hg vacancies. Therefore, the

acceptor for this p-type sample is either substitutional Au or H9 va-

cancies.

All the above experimental results seem to be in good agree-

ment. Our task is to do a theoretical study on p-type HgCdTe so as

to get a better understandings of the source of the defect states of

these acceptors.

3.1.2 General theoretical model

We will apply the shallow level approach for this HgCdTe acceptor

problem. We will calculate two possible cases: 1. A simple acceptor (A

,h ) which exists when an Au atom occupies the cationic site. 2. A

double acceptor in the neutral (A' ;h" ,h ) state, and its ionized

states (A ,h'), which can occur due to a cationic vacancy.

In the first case, the Au atom has only one valence electron, while

the Hg and Cd atoms have 2 ( The ,Au is isocoric with Hg ). The

impurity potential is well represented by a -1 point charge center,

screened by the dielectric response of the surrounding valence elec-

trons. This is a simple acceptor problem, the calculation method has

been described in Chapter 2.
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The Luttinger parameters for Hg CdTe are functions of x. Some

empirical formulae for these parameters are available in Weiler's arti-

cle". We first determine the band gap by:
=-o o.(,37';z lO.ox ¢/-=...

where T is the temperature in 'K, and E is in meV. The Luttinger2|
parameters are functions of

=Y .3f 333/E.
-,-- o./-+3,"7/..,

0. 7,

The temperature T is set to be 0 since we are interested in low temp-

erature acceptor levels. The dielectric coefficient C is also a fuction

of x, and the curve of C- vs. x is available from Fig. 85, P.93 in

Dornhaus and Nimtz's article". All the necessary parameters E-,-/,

SE, effective Rydberg R. and effective Bohr radius a are then

calculated and listed in Table 3. 1.

For the 2nd case, the cationic vacancy problem is a many body 14
problem. During the crystal growth of HgCdTe alloy, Hg or Cd va-

cancies can be formed in the lattice. Hg and Cd atoms are randomly

distributed in the cationic sites but with Cd molar concentration equal .

to x. A schematic representation of such a cationic vacancy is shown

in Fig. 3.2

This vacancy problem has been treated by Swarts et al 2 using a

tight binding Green's function method. We would like to point out that

r
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in this case, the cationic vacancy introduces a -2o defect charge cen-

ter, which is much weaker than the perfect crystal potential. The de-

fect state wavefunction is very spread out (not localized enough to

have a tight binding treatment). A shallow level method of GEMT is

more suitable. However, the deep level method is good for a Si va-

cancy in Si, in which the defect charge center, -4e, is strong and

comparable to the crystal field potential. This Si vacancy problem has

been treated in several papers both with and without the Jahn-Teller

effect (lattice relaxation). The II-VI vacancy is a simpler problem

than the Si vacancy.

Another way to justify that the perturbing potential can be de-

scribed by a -2e point charge is to look at the the model potential

plot of Hg and Cd ions (Fig. 3.3). A model potential is a potential

which divide the lattice ion potential into two regions: the core region

and the region outside the core. Inside the core, the lattice potential

is replaced with the square well potentials; outside the core, the po-

tential varies like the Coulomb potential. The model potential can give

the correct eigenvalues and wavefunctions in certain energy range.

The model potential we used in our plot is the Heine-Abarenkov model

potential which is defined by:

-I ( ;. .3)"
,° r

1Z~
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The radii of the sphere of the core region RM are less than 3  as

=0.53 X---Bohr radius), and are smaller than the lattice constant of• *.° .

HgCdTe. It is seen from this model potential viewpoint that except for

this small central cell region, the defect potential of the cationic va-

cancy can be well described as the absence of this point charge po-

tential. However, in the central cell region, the point charge Coulomb

potential is apparently deeper than the model potential and will result

in an overestimate of the binding energy. Due to the smallness of this

central cell region, and A2, A1, A0 are not too different from the

Coulomb potential at R the overestimate is small.

For the double acceptor, ZA=- 2 , we will carry out the r ulation

for (A ;h ,h) and (A ;hW). For (A;ht), the singly charged ionized

state can be treated exactl Ii a~sjmpl ce r problem except the
defect potentiaLshould.be -2- i For the neutral double acceptor (A

potentia -- ho l ..'t3

;h ,ht), the total Hamiltonian has to include the Coulomb interaction:

reH ) and H.(rj are the single hole Hamiltonian operators. Wewhere H r

know from Chapter IL that H. (r) is reducible to a radial coupling

equation of GEMT. To solve eq. (3.1.4), we reduce it to the single

hole Hartree-Fock operator through the standard variational principle:
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where f'(r')is the known orbital. Then, the solution are iterated for

self-consistent (r).

The Hartree-Fock equation still needs to be simplified. First, we

can simplify the Coulomb interaction matrix element, which will be de-

scribed in the coming subsection.

3.1.3 The Coulomb matrix element

Both holes in the double acceptor at ground state have Til symmetry,

and angular quantum number F=3/2. Because of Pauli exclusion rule,

these two holes can not occupy the same quantum state, i.e. their F.

's ought to be different (F. can be one of 3/2, 1/2, -1/2, -3/2).

The Coulomb matrix element:

will be different for different choices of F., and Fz,. But the differ-

ence will be small and unimportant when we perform the Hartree-Fock

iteration. We will fix the small differences in the later section as we

discuss the j-j coupling and the exchange term. For convenience, we

select F,=3/2 and F,=-3/2 to find the Coulomb matrix element. Our

goal is to find a radial form for the double integral of eq.(3.1.6), so -

as to make it compatible with the radial operator in the simple accep-

tor GEMT equation. "'"

r"
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The 1', symmetry hole states, as mentioned in Chapter 3, is ex-

pressable in the s-like and d-like radial envelope functions multiplied

by their angular quantum states (which is a coupling of the orbital

angular momentum and the Bloch states effective 'spin'), i.e.

(;.I.7) &r) I-.7 =0..=.12..Z

Our first step is to decouple the angular kets. By refering to the

Clebsch-Gordan coefficient table, the angular kets are decomposed

into the spherical harmonic Ylm space and the effective spin J=3/2

functional space:

3 1

where 3/2, 1/2) represents the spinor 3/2 states. We will as-

sume an approximation that the spin states are orthogonal to each

other, and X are independent_of__the.radialpart andthe YL". space.

This approximation is very good for the spread out defect states of

shallow acceptors, but not for the localized state of deep levels. The

Coulomb interaction integral should not only be integrated over the

spatial variable r, , r. , but also be intergrated over the spin part

x, 04 , ::
-X2

We use to denote the Coulomb operator . In our approxi-

mation, 9 has nothing to do with the spinor states. Thus, we can se-

-32-
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parate carry me
paaeout the spin functions in the Sr ndotth pn ne

grations on particle 1 and particle 2 based on their orthogonal prop-
.- '-

erty. This step can greatly reduce the number of terms in the final

expansion of the matrix element.

We use a simple table to indicate the result after the integration .of

the spin states of the first particle ,where f, g, are radial

envelope functions of fbr'):

-°Ao

~ f~y~~f./.-f').-..._0

1, TO-Y- 0 -

6terms are left for the first particle r, .Similarly, spin integration-..

of the econdp rtiler also leaves 6 terms, where f., g. are radial

envelope functions of
-33
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Picking any one term in the first table, multiplying it with the

Coulomb operator 9 and any one term in the 2nd table, then integrate

over yo and Y. will give us one term in the final expansion. There-

fore, we have 6 x 6 : 36 terms to evaluate. For example,

o .il rd /+ ..rk

is the first term.

We treat the general term

nteatoic physics. h operator g is expandable into the Ylm

space of r, and r through the addition theorem:

where r means the smaller one, r, the larger one of r, and r,, L

With eq. (3.1.-)) ,eq. (3.1.) is further separable into the product

of a radial integral and two angular integrals, summed over all 36

terms:

A \A)

where

-34-
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is an radial integral.

is called the Gaunt's coefficient, and is equal to

where the parentheses (. are 3-j symbols. Gaunt's coefficients

are tabulated in some books"" .

These 36 terms can be calculated one by one with the help of

Gaunt's coefficients. For example, the first term

000 00 02?) 4 ( 1 ~,J-• -_ii&)

because only c,(0,0,0,0)=l and all other c.,O.

After we calculate each of the 36 terms, the total sum for the Cou-

lomb interaction matrix element is found to be:

-35-
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All terms are radial integrals.
i 

41

The RF term is very small compared to the other terms and can be

neglected in our calculation.

3.1.4 Derivation of the radial Hartree-Fock operator

The double acceptor wavefunction can be written as an anti-sym-

metrized product of the two individual hole wavefunctions (In our cal-

culation, we have assumed one hole with Fz,=3/2, the other with F,.

-I

( ./.)7)

The binding energy E is given by the matrix element of the total t
Hamiltonian

The first two terms in (3.1.18) are the single hole Hamiltonian, the

third term is the Coulomb interaction and the fourth term is the ex-

change interaction. P

= d,.,,-36-
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We know from the simple acceptor EMT, the H*(r) can be approxi-

mated by the spherical model H and the angular integration can be 7.

performed by the reduced matrix element method and 6j symbols. The

single hole part is reduced to the radial integral bracket:

where J7#, 17 n, -Lv, J',lare radial operators defined in eq.(2.3.2) of

Chapter 2. The Coulomb matrix element are known to have a radial

form derived in section 3.1.4, and the exchange term has a similar

form,but with a smaller value.

The term can then be expressed in the radial form:

It is understood that the above brackets notation only means the ra-

dial integrals. The normalization of wavefunctions then require that

and

and the orthogonality (: ,/) = :

The variational principle requires to minimize under

the normalization constraints:

-37-
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It is natural to use the Lagrangian multiplier method for minimiza-

We know there exists a set ,'and (P. by finding the appropriate li-

near combination of 0, and *6 This linear combination will not

change (tf < .t/i, but will make X,,. 0 (no off-diagonal eigenva-

lue term). This diagonalized ;k, X, and p,, c .' are what we are

seeking. Let us for simplicity drop the primes of and Ak we

can simply make

or , .I /, -.X, < € (,> kI',.1%)> = o....."

From eq. (3.1.20), is reduced to the radial form having

4 variable functions f,, f., gi and g... The variation operator

then is equivalent to the infinitesimal variations of Orf, eff, S7, J .
respectively. Lw..

We leave out the exchange terms in eq.(3.1.%O) because they are

small compared to the Coulomb terms. As a standard procedure, we

can vary f, and ,from the left while treating f, and as known func-

tions. Varying f,, we obtain

Eq. (3.1.14) can be expressed as

.<,r,, fr-,> .< 6, /.,',+! bp,> -4 <;f~ , ,, Ij, >-t <;f / /Z,J,>

,'38-
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where H.-j,, H,.., are implicit Coulomb field integrals of f1 and

defined by

:", (vi'.f, . .O 4;. "i "

n'

Couhn f ( ?>
In a similar fashion, the variation of £s, from left reduces to

Coupling eq.(3.1.2-,0) and eq.(3.1.27 , and writing them in a ma-

trix equation form, (the unknowns are f,, g, and j'f, Jrg, are arbi-

trary infinitesimal functions, we obtain:

11 -I'II

In the above equation, we replaced by the Hartree-Fock eigenener-

gy E Therefore, we have derived the Hartree-Fock equation for

the double acceptor problem.

-39-
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3.1.5 The screened Coulomb interaction

The Coulomb interaction between holes is screened by the valence

electrons. We use the linear response theory to consider the electron

redistribution at the presence of a hole charge. This linear theory

approximates the dielectric wavefunction with Cq), is the wave

vector. It is known in the 2nd chapter that (.(q) can be fitted to be:

The screened.o ulomb potential due to one hole is

= 2

and 6-(r) is found to be -1

With the dielectric function &(r) in real space, the screened Coulomb

interaction between two holes is

where is the charge density.

Eq.(3.1. 3 %) is a very complicated integral. To simplify it, we use L.
the Fourier transform technique. The theorem we apply is

ff Ov) - ,'
I. ~AJ 'O 3'") 72

- I-.,%)..

where the functions with k sub-index means the Fourier transformed

functions.

R
-40-•.-



The screened Coulomb operator part w("r. r~ obviously has the

Fourier transform

We know the hole wavefunction t(r) has the form

Let us use the abbreviated notation 11>, 12) to denote the angular

kets,

The Fourier transform of the probability density of one hole is

3.I

v<I. Vo hv 4 400w 2'40t iamep~y ;traA.) .. 37)
We will simply do the transform for f part only. The g part has a

complicated angular part, and would be more complicated when inte-

grated with the Coulomb operator. It is easier for the f part to be

Fourier transformed because its angular integration part </ I/>-

is a constant, and f(r) is expanded in Gaussian basis functions. It

can be easily verified that the Fourier transform of a Gaussian func-

tion remains a Gaussian functioni. The final result of the screened Vk

due to the f part of 0,and is found to be

where a7 's are expansion coefficients of 6Z. 64L ~'

-41-
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The screening for the rest terms of f, g or g, g interaction are

not considered for mathematical and programming simplicity. TheseN.N
terms simply preserve their unscreened form:

IjI

( t. I. 2 .-.

Therefore the only screened term we have included is the f, f in-

teraction. This is none-the-less a good approximation. As we will see

from our computer result, g amplitude is much smaller than the f am-

plitude, and RCf I, f , f, fh) is the dominant term (usually of 2

orders larger than the other terms) in the unscreened Coulomb integ-

ral. We have seen that in the GaAs double acceptor, the screening of

f, f interaction increases by about 10% from the bare Coulomb poten-

tial.

3.1.6 numerical methods and results

With the radial Hartree-Fock equation obtained in eq. (3.1.28), we can

go through a similar formulation as for the simple acceptor. First, a

pair of known envelope functions f', g' must be assumed. We expand

all known and unknown f, g's in the Gaussian-type basis functions.

The Hartree-Fock equation can be converted into matrix equations:

(A -t" AQ = (3..37):7

where A. is a simple acceptor spherical matrix as given in eq. (2.3.

cj)c is the column matrix of the unknown expansion coefficients of f,

9. A't is the extra matrix due to the Coulomb interaction,and

4.2.

i" -42-.
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The matrix elements have been found to be:

i-4-

.41~ *1 TU/41)" '

i:: where a' a', b'; b. are the expansion coefficients of the known" radial

.4.4

-.: To include the valence electron screening due to the f, f interac-"..

tion, the matrix block of <: o.,I~~ s replaced by

4 ..14 . / ) ., / '--.

. .o. . . . . ."

• .... ... ....... ....-... ..... .... ,..... .•. .:.. .... .. . ..... .. ....,,....._.;.
",

",Z.r ¢ .- """ """ *" " " " "• • ."• -" " " """""-- - -.---"..." "'.."' "'"



L

In the iteration process, we use the known coefficients a b s of

f, g' of one hole, and generate f, g of the unknown hole. At ground

state, both holes have symmetry of ij, and have identical radial

parts. We iterate until f=f' and 9=g' , we know this is the self-con-

sistent solution. An antisymmetric product of these two individual hole

orbitals gives the double acceptor wavefunction. The binding energy

E of the (A ht, h) system can be found by comparing the total

double acceptor Hamiltonian and the one particle Hartree-Fock Hamil-

tonian, the relation is

where V,_h is the hole-hole screened Coulomb interaction as defined

earlier.

In experiments, what can be observed are the 1st ionization

energy = E CA = - E h- jt.) ) and the 2nd ionization energy &E = -

For the simple acceptor (A-, h ' we have calculated the envelope

functions at several x values, and the binding energies vs. x are:

Fi - T)97 0
( , 4 V)r

Comparing the magnitude of the binding energies with Hunter and

McGill's" photoluminescence data, we suggest the levels they ob-

served were the simple acceptor levels from Au impurity.

-44-7
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For the double acceptor, we calculated (A h ) and (A'k h, h')
at x= 0.25, 0.48, 1.0. The &E,, IE, are . plotted to co-

p d .

pare with the variation of bandgap Et. It is seen that &E, and 6E,

are much smaller than E for x, 0.20. These levels are indeed shallow

levels. We also obtain the f, g envelope function plots, for example,

f,g for x=0.25 are shown in Fig.3.5. It is seen from this plot that ,

the amplitude of g is much smaller than that of f, indicating that this

is a f-dominating (or S-like) state. The average radius can also be

calculated for (A. h') and (Al h', ht) by using the formula:

the results for (A7; h+ are 581, 46A and 331 at x= 0.4, 0.6 and

0.8. Average radius of (A- ; h) are 79A, 18A and 10A at x= 0.25,

0.48 and 1.0. The<r>'s of (A; h, ht) are larger than the corres- J.

ponding (A-C; h+) states. All -Oe. <r)< are mvepal.J "tim's

larger than the central cell radius of just a few Angstroms. Thus,

help to confirm the validity of using the point charge approximation -.-

as the defect potential.

The same Hartree-Fock scheme can also be extended to the Z =-3

and ZA=- 4 cases for qualitative purposes. These are strong defect

centers, the defect states are expected to be localized, and the point

charge approximation is no longer appropriate. However, the GEMT

still works as an effective method for qualitative results. The modifi-

cations we need to make from the double acceptor SC-GEMT scheme

-45-
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are: 1.The defect charge center should be replaced by -3 and -4.

2.At the ground- state, the Hartree-Fock operator is replacod by:

( . I.)1) O-:r-

where n (.54) is the number of holes in the system ( The P1 symme-

try can hold up to 4 holes with different F ). 3. The equation for

binding energy is

V&A),:

For our interest, we calculated the ZA =-3 case ( which has not yet %'.

been related to some kind of defect or defect complex), the levels are

deeper and the wavefunctions are more localized than the ZA=-2 case.

The result for ionization energies is

0.6 P 7 /

* r

77

sociated with the Cd. antisite in CdTe, the result based on point

charge approximation (which is crude for this case) is

2.4 eV, which lies within the conduction bands. This result can be

-46-
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interpreted as that this level is either a deep level or is a resonant

state (lying in the conduction band). This interpretation is in agree-

ment with Swarts, Daw and McGill's Green s function tight binding

calculation.

3.2 DOUBLE ACCEPTOR IN GALLIUM ARSENIDE

GaAs is a semiconductor material of great interest because of its

high mobility, Gunn Effect and usefulness for making high speed mi-

crowave devices and light emitting diodes.

Some intrinsic defect levels have been observed by photolumines-

cence, Hall measurement and DLTS ..... For example, a main electron

trap level located at about 0.75 meV below the conduction band edge

is suspected to be coming from the As anion antisite (this level is

commonly referred to as the EL level) .This is a deep level double

donor problem. In this section, we will discuss another type of in-

trinsic defect: GaAs cationic antisite, which is a shallow level double

acceptor problem.

Yu et al"'" identified an acceptor level located at 77 meV from

the valence band edge in their liquid encapsulated Czochralski (LEC)

grown GaAs sample with photoluminescence experiment. This level has

been seen by other authors with different experimental techniques.

A sketch of Yu's PL data is shown in Fig. 3.6. This level was pre-

sent in both p-type conducting and n-type semi-insulating crystals

grown on the Ga-rich melts. The main background impurities are C

and B. The impurity level of CAs is a simple acceptor, is located at

-47-



1.493 eV, and is considerably different from the 77 meV (1.441 eV

form the conduction band edge) level. On the other hand, the B im-

purity can also be a double acceptor by sitting at an As site. Howev-

er, local mode spectroscopy shows that the Boron atom is mostly

substitutional in Ga sites and BAs does not occur in p-type material.

The PL spectrum also shows an emission at 1.284 eV with a very small

intensity compared to 1.441 eV level. This 1.284 eV level (230 meV

from the valence band edge) corresponds to the 2nd ionization energy

of the double acceptor, which is consistent with the value determined

by Hall measurement.

Theoretical calculations by Louis and Verges3" shows that possible

bound states of cationic antisites in GaAs are A, and Tz states. The

T. state has three fold orbital degereracy and two fold spin degener-

acy. The neutral state GaA, is the T3 state occupied by four elec-

trons. Three possible states: neutral, singly charged and doubly

charged states (Ga,, GaA. and Ga) can exist for GaA,, antisites. The

method they use is the tight-binding calculation based on the cluster

Bethe-lattice with some fitting parameters. The same method was used

in the study of vacancies in Si surface" ' " .

Our approach to this problem is the Hartree-Fock self-consistent

GEMT we use in Section 3.1. When a Ga atom (atomic number 31) oc-

cupies an As (atomic number 33) site, this isocoric impurity has a

charge deficiency of 2e, and becomes an A acceptor center. The

binding energies of two cases: 1. neutral Ga case 2. singly ionized -

Ga (A ; h+), are calculated with the established scheme. As usual,

-48-
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the perturbing (defect) potential is a valence electron screened -2e

point charge:

~J ~r' 41(~ 7)
The parameters we use in this calculation areA/U= 0.767, 6.=12.56,

and (S=0.93 a.u..
-I-

The binding energy of the one hole (A ; ht) system is -290 meV

according calculation. Thus, 290 meV is our theoretical value of the

2nd ionization energy. Compared to Yu's data, the deviation is 26%.

The 2 hole system (A; ht, h4 ) with screened hole-hole Coulomb in-

teraction is found to have the theoretical binding energy of -415 meV,

thus we deduce the first ionization to be 125 meV

I). Compared to Yu's experimental result of 77 meV, the deviation is

62o.

The over-estimate of our theoretical result comes mostly from the *1

over-estimate of the perturbing potential in the central cell region by

the point charge model. There are two practical ways to look into this

discrepancy. The first way looks at this discrepancy through an em-

pirical interpretation. The overestimate of energy with the point

charge potential is obtained by taking the difference between the

theoretical value and the experimental value, Jr'E = 290 - 230 = 60

meV. With a rather crude assumption, we assume that in the 2 hole

system, The overestimate ;E stays the same for each hole ( Apparent-

ly this is not true, since the average hole orbital radius (r) in (A; h -.

h ) is larger than (A ' h ). The holes in Ga;s are farther away
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from the central cell region, the overestimate in binding energy

should be smaller than the single hole case), then the binding energy

-. of (A; ht, h# ) is overestimated by 2JE = 120 meV (this is an upper

bound for the overestimate). Therefore we obtain an underestimate

for the E 'i.1,owhich is (-415) - (-120) = -295 meV. This implies aE,'

=295-230 =65 meV, which is a lower bound to the &E, ,and is within

-151% accuracy to the 77 meV experimental value.

The 2nd way to deal with the central call discrepancy is through a

semi-empirical adjustment. This method has been suggested by Lipari

et all" and applied to the Si and Ge spectral. The idea is to add a

semi-empirical short range potential V,,,(r) to the screened point

charge potential. This short range correction potential accounts for

the difference in the volume of the ionic core of the impurity atom, as

well as for differences in lattice relaxation around it. A phenomenolo-

gical approach is adopted to assume V.(r) to be in this form:

-
o 

-

where is selected to fit the ground state energy of (A h We

found that V31.005 a.u. (slightly different from p=0.93 a.u.) could

fit the binding energy EIA-l1r) to the experimental value. The defect

-"
" soetld besande V.harte plotte inFi.eI cah n the sedienerhat.V,.

of(r) is sml an is imoretate ny th cenra cell region ith n tppris

V1o1 we recalculate the (A-"; h h# ) system, and obtain the first

ionization energy=AE 105 meV, which is within 30% accuracy with ex-

. -.. . .



perimental result. The envelope functions f, g for the one hole and

the two hole systems are shown in Fig. 3.8. N



~- - - - -- - - - - - - - - - - - - -- - - -

L, r
k

2 - r

IC

-52



~.... ....

Ho 7e,

Te, / 2 7e

N-0. .000

7ei

1-4~~ - Ll~--(

Fig. 3 .2. A cationic vacancy in 1{gCdTe
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X Eg R' R*
(MOV) (meV) ()

0.18 32 0.989 17.6 0.220 1861

0.20 70 0.976 17.4 0.479 865

0.25 164 0.95 16.7' 1.25 357

0.30 258 0.923 16.2 1.875 238

"'0.3 296 0.913 16.1 2.423 197

/0.40 448 0.877 15.3 3.34 141

v/ 0.48 600 0.845 14.2 4.88 103

0.50 638 0.835 14.1 549j 98.5

k/ 0.60 830 0.804 13.2 7.2 76.5

0.70 1023 0.775 12.3 9.42 61.9

/0.80 127074 1.8 211.6 52.9

0.90 1412 0.725 11.0 14.4 4.

V1. 00 1608 0.704 10.8 16.2 41.3

Table 3.1. Parameters of H
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Chapter IV

SELF-CONSISTENT GEMT OF ACCEPTOR BOUND
EXCITONS

4.1 INTRODUCTION

Since the first observations by Haynes", the radiative transitions

due to the recombination of an exciton bound to a neutral impurity

have become more and more important for the understanding of the

low temperature emission spectra in a wide range of semiconductors.

The double acceptor iteration method can be further extended to solve

the acceptor bound exciton (A , X) problem. A neutral acceptor

bound exciton is a system composed of a neutral acceptor A = (A, h!

) binding a free exciton X=(e',h4) (electron-hole pair). (A*, X) is a

3-body problem with two kinds of moving charged particles.

For years, people have been studying the binding energies of the

bound exciton complexes (DO, X) and (A", X), where (D*, X) is the

neutral donor bound exciton. Plenty of accurate experimental results

from photo-luminescence and other methods are available. It remains a

theoretical problem to interpret the experimental results.

Most of the theoretical work has been done with a model Hamiltoni-

an with a simple spherical valence band and conduction band. The

Hamitonian commonly applied to (A, X) is

(4..)

-61-
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APPENDIX B

Chapter III

BANDGAP BOWING

3.1 PERTURBATION THEORY

The effect of alloy fluctuation potential on the compositional depen-

dence of energy bandgap is discussed in two alloys, (AI,Ga)As

and(Hg,Cd)Te, in order to examine our model of Vf The former is

an important material for semiconductor light source and the latter is

the most widely used material for far-infrared detector. The investi-

gation is carried out through a second-order perturbative calculation

beyond the VCA. Perturbation theory is an important approximation

method in quantum mechanics."' 3 It was first used in an extensive

calculation for bandgap bowing in reference 33, although it had been

discussed much earlier in reference 15. In spite of the degenerate

nature of every band structure, the time-independent nondegenerate

perturbation scheme was used in practical calculations without any ex-

planation. We shall also apply the nondegenerate perturbation equa-

tion to obtain second-order corrections to the VCA bandgap but we

will discuss the effect of degenerate states.

Up to second-order the alloy energy level is in the form

E,(x) E (IX) + E) (ix . '3'":
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where the first order correction due to Vf is zero. En (0(x and

n~x) are the VCA band structure and Bloch states obtained from the

EP band calculations without spin-orbit interaction. The Bloch state

ln~x) is normalized to unity over the volume of whole cryatal. N is

the number of unit cells in the cryatal The dVc and dVA are defined

cation and anion disorder potentials.

Figure 3-1 shows the calculated EP band structure of AlAs along

symmetry directions (100) and (111). During the calculation each

Bloch function is expanded by 65 plane waves, so the energy bands

and expansion coefficents are the eigenvalues and eigenfunctions of

the 65 by 65 complex Hermnitian matrix. The numerical number as-

signed to each band is to specify the band index n in equation 3.1.

Higher conduction bands not shown in the figure have successive

number up to 65 and only the lowest 15 bands will be used in folling

*calculations. Because we are onterested only in the lowest direct

* bandgap, the conduction band minimum and valence band maximum are

*referred to the states 150) and 140) at k=0O. And their second-order

shifts due to Vfare to be found by using equation 3. 1. It is evident

from Figure 3-1 that the energy denominator in the equation will be

zero for certain degenerate k points in the Brillouin zone. If degen-
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erate perturbation scheme is to be used, all degenerate states of the

unperturbed system have to be known exactly. It is not possible in

practical calculations because all the k points of degenerate states can

A

matical singularities may not appear in the calculation that will be

explained in the following.

For states near 140) and 150) the discrete summation over k states

can be transformed into an integration

= -___ t4.U d-? ' , (3.2

where a is the lattice constant and Q1 is the volume of a unit cell.

The energy levels near k=O are expanded as polynomials in k accord-

ing to the k.p theory."'

v- V..

2. M*
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where m is the mass of a free electron, m is the band edge effective
mass, t is the Planck constant devided by 2K is the momentum op-

erator, and u(r) is the periodic part of band edge Bloch states.

The second-order energy correction due to states near k=O is then

tU) 10) r

7 ---- j~no~dvh'>I a2444o4

where InO) is the state at k=O and Ink is a state near k=O. If the

-,2quantity I(nOIdVInk )I is a slowly varying function near k=O, the

result of equation 3.5 can be further approximated as

~:2

LCN VAO k-I ; 0"(')=' no I VI Kk ' . (3.6)

N-=OO 1 6A-'P 0

It is obvious that the second-order correction is finite for states near

k-O instead of being divergent. The assumption of nearly canstant

matrix elements is checked allright in AlAs.

Similar procedure can be taken for degenerate states within the -"oI

conduction bands.
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The summation over k states is again transformed into an integration

over a small sphere centered at the degenerate k state. The matrix

elements of dV are assumed to be slowly varying in the integration

volume.

j< -; -,- ,DA ( IdVI"&' ,
-t E (2k)

#2.T /PW~4

Pro'('

where k0 is the radius of the sphere and 2 stands for the principle

value of the integration. ' The result of second-order correction is

again proved to be finite for degenerate states.

-66-

. A * - * *. .. ........................................



With the assurance that degenerate states do not cause any

singularity in numerical method. The summation in equation 3.1 is -

carried out over the lowest 15 bands at 88 points in the irreducible

(1/48) part of the Brillouin zone (BZ). The BZ of a face-center-cu-

bic lattice is shown in Figure 3-2. Due to its symmetry properties,

the summation over the whole BZ can be reduced to the smallest re-

peatable part which is denoted as the shaded region. The summation

should in principle evaluated as a function of composition x. Because

of the elaborate computations involved, we calculate it in the limits

x=0 and x=1 only. In most cases the results of the summation term

do not vary drastically between two parent compounds, therefore, a

linear interpolation for it at intermediate x values serves as a good

approximation. _

3.2 (AL,GA)AS ALLOY SYSTEM

(AI,Ga)As is the most intensively studied alloy semiconductor for

hetero-structure laser and photodiode. The application of it is based

upon the close lattice match between GaAs and AlAs. Recently it is

used to construct a hetero-structure type field-effect transistor in

which a high mobility two-dimensional electron gas is separated from

their parent donors. ' '"' Higher electron mobility is achieved be-

cause the scattering from ionized donor impurities is reduced and it is

useful for high-speed and high-frequency devices.

There have been several determinations of the compositional depen-

dence of the energy bandgap in (AI,Ga)As. And the largest uncer-
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tainty in the assignment of bandgap versus composition is generally

the determination of the composition of the sample. The experimental

data will be examined more carefully when they are compared with the

calculated results. Previous studies on the energy bandgap is re-

viewed here. The first theoretical calculation of bandgap bowing in

(AIGa)As was carried out in the electronegativity model.' The in-

trinsic bowing in the VCA was zero and the extrinsic bowing -0.03 eV L
: was much less than the experimental bowing -0.2eV. The difference

in electronegativity of Al and Ga atoms and a semi-empirical second-

order pertur'bative approach was used for obtaining the extrinsic

bowi ng.

With an EP model for the cation disorder potential, the extrinsic

bowing was evaluated by an extensive second-order perturbation cal-

culation over the VCA. 3 A bowing parameter +0.04 eV with a wrong

sign with respect to the downward bowing was obtained. It was sug-

gested taht the EP model be not suitable for the bowing in this alloy

which will be disproved by us later. The CPA was also applied to

calculate the alloy band structure and scattering rates by Chen and

Sher." '  The Tight-Binding (TB) Hamiltonian was expanded by Gaus-

sian-type atomic orbitals and the TB parameters were found by fitting

band structure to pseudopotential results. The fluctuation potential

was characterized not by the TB parameters but by bonding and anti-

bonding energies of which the physical meaning is not clear. Howev-

er a bowing parameter of about -0.17 eV was obtained without giving

any interpretation. L
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In order to use equation 3.1, dVc and dVA in our model have to

be defined first. Properties of published EP form factors are exa-

mined before they are applied to set up a suitable model of V Ta-

bles 3-1 and 3-2 summarize the atomic local EP form factors fitted in

GaAs and AlAs respectively. 3 7 "' '"'9' 7 1  The values of cation and

anion disorder potentials are listed in Table 3-3. For the most impor-

tant form factors at first two reciprocal G vectors, the magnitude of

disorders are only 7% and 2% of the cation and anion atomic form fac-

tors respectively. They are one evidence of the smallness of the al-

loy fluctuation potential. However the anion disorder potential is

large at high q values which corresponds to a not negligible effect of

valence charge transfer mentioned in section 2.3. Supportive infor-

mation of these different As atomic pseudopotentials can be found in L
the empirical tight-binding parameters shown in Table 3-4."2 The

site-diagonal parameters of As atom are fitted differently in two pa-

rent compounds in order to generate realistic band structures in each L.
* parent compound respectively.

* Linear interpolation and extrapolation are used to approximate the

continuous curves of disorder potentials as functions of wave number

q. The procedure follows exactly discussed in section 2.4. The

atomic MP parameters of Al and Ga are listed in Table 3-5 for the va-

lue of dV(q=)." The radius R will be set equal for both atomsM-
such that two Coulombic tails cancel each other exactly. The Fourier

. transform of the difference of constant potential wells inside R is
M

expressed as
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The second and third terms in the braces in equation 3.9 are less

than 20% of the first term. They exhibit explicitly the nonlical prop-

erties of the ionic core in the MP formulations used here. Their small

contribution in equation 3.9 makes the nonlocal MP compatible to the

local EP model.

Because the perturbation calculations are performed upon parent

compounds, the unit volumes and static dielectric constants of them

are used for the screened atomic form factor at q=O. The numerical

value of -0.002 Rydberg is obtained from equation 3.10. The form

factor dVc(q-O) used in reference 37 for substituing Ga and Al atoms

is exactly zero without any explanation. Another set of form factors

for (AI,Ga)As can be found in the study of hetero-structures."

Their value of dVc(q=0) was -0.0058 Rydberg. All these choices of

form factor at q=0 are comparable but our adaption of the MP is more

clear in physical interpretation. Piecewise linear disorder potentials

are plotted in Figure 3-3 with respect to q2. The dVc(q) used in

-70-



;.1

reference 37 is linearized and plotted in the same figure. Its effect
on bandgap bowing is also calculated in our program in order to make

comparison between different models of Vf.

3.3 BANDGAP BOWING IN (AL,GA)AS

As shown in Figure 3-1 the valence band maximum at k=O is

three-fold degenerate without the spin-orbit interaction. State 140)

is taken as the unperturbed level for valence band and 150) repre-

sents the unperturbed conduction level. The intrinsic bowing ob-

tained in the VCA with our choice of EP form -factors is zero. The

extrinsic effect of disorder potentials is carried out as described in

section 3.1 with the dV(q) curves shown in Figure 3-3. The calcu-

lated second-order bandgap shrinkages beyond the VCA in GaAs and

AlAs are summarized in Table 3-6 without the x(1-x) factor in equa-

tion 3.1. The bowing parameter with a wrong sign in reference 37 is

reproduced in our calculation with an approximated dVC Although

our value of *0.004 eV is ten times less than theirs, it is clear that

further comparisons between these two model of dVC are meaningful.

The discripancy may come from the differences in Bloch states, di-

sorder potentials, and sampling k points. The calculated bowing par-

ameter in our model is -0.01 eV with only dVc which is close to the

-0.03 eV obtained in reference 5. But with both disorder potentials

our calculated bowing parameter is -0. 125 eV. The good agreement

with exprimental bowing -0.1~ -0.2 eV proves the significance of the

dVA in a cationically disordered system.
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The energy shifts of 140) and 150) states are listed in Table 3-7.

Because of the band structure associated with the indirect bandgap of

AlAs, detail contributions of each energy band are listed in Table

3-8. According to the perturbation theory, the specified state is

pushed upward by all states below it and pushed downward by all

states above it. 140) and 150) states are always pushed up by bands

2, 3, and 4 and pushed down by bands higher than 5. 140) has

negligible interaction with band 5 under all three cation disorder po-

tentials. The test cation disorder potential has a large form factor at

q=0 as shown in Figure 3-4. 150) is pushed downward as a net re-

suit from all states within band 5. The calculated bandgap shrinkage

in AlAs in twice as large as in GaAs. The same trend was observed
in the CPA calculation of (AI,Ga)As" and in the perturbation calcula-

tion of Ga(P,As).' 2  One reason may be related to this is that the

energy bandgap of GaAs is about one half of those AlAs and GaP.

The effects of form factor at q=0 on bandgap bowing are summar-

ized in Table 3-9. The very large q=0 value of the test potential

does not change the total bowing much because the bowing is mainly

controlled by the anion disorder potential. The determination of the

high q tail in EP form factor is discussed in section 2.4. Monotoni-

cally decreasing tails are chosen for our disorder potentials as shown
in Figure 3-3. If the high q tail ia an abrupt one as shown in Fig-

ure 3-4, its effect on the bandgap bowing is listed in Tables 3-10 and

3-11. The high q tail has little effect on the test potential but large

effect on the anion disorder potential. The choice of a decreasing
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tail is reflected in the better agreement of final bowing with experi-

mental value. The overall result of our model shown in Table 3-7 is

meaningful with respect to small variations in the dV(q) curves. Its

comparison with experimental data is discussed in the following para-

graphs.

. The scatter in experimental data for the bandgap versus composi-

tion in (AI,Ga)As is substantial f rom earlier investiga-

tions " "  and an average curve computed from some scat-

tered data has frequently been used for practical purposes. 7  One

reason for this spread in data was the use of a variety of experimen-

tal methods such as Schottky-barrier photo-current", electroreflec-

tance", and luminescence' 6 in measuring the bandgap. The second

reason was the control of composition in sample growth and the evalu-

ation of alloy composition. More recent experinental measurements by

means of low temperature photo-luminescence technique showed a con-

sistent trend in bandgap variation. '
°

'
°  As listed in Table 1-4

the bandgap varies linearly for 0.5>x>O and parabolically for

1.0>x>0.5.

The determination of alloy composition in reference 80 was achieved

by electron microprobe on two independent occasions on every wafer.

These two observations were in good agreement, and therefore the

uncertainty in x can be reduced to less than 0.02 at any composition.

The maximum bowing at room temperature is about 70 meV around

x=0.8. The maximum bowing in reference 81 is about 160 meV around

x=0.8. There is a lagre deviation in maximum bowing even two sets
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of data have consistent trends of variation. However the alloy comn-

position in reference 81 was determined by Auger sputtering techni-

ques which might introduce higher uncertainty in x. If the measured

composition of the samples in reference 81 is shifted by about 0.04,

the maximum bowing is reduced from 160 meV to about 100 meV for

0.7>x>0.6. This value is more close to that in reference 80 and our

result.

The theoretical curve of bandgap bowing is plotted in Figure 3-5

together with the experimental one from reference 80. The magni-

tudes are comparable but the asymmetry trend in experimental curve

can not be explained by the present theoretical results. One reason

may come from the experimental determination of bandgaps in the in-

direct bandgap regime from optical measurements. The second reason

*is that the compositional dependence of bowing has not been

calculated explicitly as a function of x. If the summation in equation

3.1 is computed for some intermediate x values, we can be more cer-

tain about the theoretical trend in bandgap bowing. The spin-orbit

iriteration is not included in our calculations. We believe its absence

does not affect the theoretical curve much and can not explain the

asymmetry in experimental curve either.
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3.4 (HG,CD)TE ALLOY SYSTEM

The fundamental energy bandgap in (Hg,Cd)Te can vary from 1.6

eV of CdTe to -0.3 eV of HgTe. Figure 3-6 illustrates some schemat-

ic band structures of the alloy near zone center. Without spin-orbit

interaction the heavy hole band is two fold degenerate and the band

numbers are consistent with those in Figure 3-1. Figure 3-6a and

3-6b are of the normal band structure of zinc-blende semiconductors.

State 150) is the conduction band minimum and the valence band max-

imum is three-fold degenerate. The nonparobolic effect is emphasized

in Figure 3-6a for very small energy bandgap. Figure 3-6c repre-

sents the so-called inverted band structure in which the state 120)

has the same symmetry properties as those of state 150) in normal

band structure. Because the E0 (X) covers two atmospheric windows

around 10 um and 5 um wavelengths for x around 0.2 and 0.3 respec-

tively, (Hg,Cd)Te is a prominant material for infrared detector.

It covers also the wavelength of the maximum of thermal radiation

at room temperature and could be useful for measuring temperature

gradients in the environment or in medical applications. Several re-

views and Conference proceedings have been published on the alloy

system in the past few years.' '3, '2 '' They emphasized diffe-

* rently on material preparation, chemical and physical preperties, de-

fect study, transport properties, and device applications. As for en-

ergy bandgap bowing, the measured compositional dependence of

fundamental bandgap have small discripancies in bowing parameter by

defferent authors. The scatter of data is however not as bad as in
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(AI,Ga)As. The critical x value for semiconductor-semimetal transi-

tion is around x=0.17. Reference 11 compiled all the existing data of

measured bandgap and fitted them with a third-order polynomial of

composition x. It will be used as a standard experimental result to

be compared with our theoretical calculations.

Theoretical studies on the electronic structure of (Hg,Cd)Te were

first carried out by Korringa-Kohn-Rostoker method" and Model

Pseudopotential method" in 1971. Compositional dependence of band-

gap was not discussed in the former and the VCA bowing in the lat-

ter was zero. Empirical pseudopotential was used to calculate the

band structure and charge densities near ksO in the VCA and a linear

bandgap variation was obtained." Previously published EP form fac-

tors of HgTe and CdTe"..'..' . were considered in reference 88 and

on them some modifications were made in order to improve the agree-

ment between the experimental and theoretical reflectivities. So form

factors from reference 88 are used in our model to construct the ca- -

tion and anion disorders. The seven atomic-type potentials in our

model is implicitly contained in the VCA in reference 88.

It is shown in Table 3-12 that the constant slope in the VCA

bandgap, 1.9 eV, can not be explained by cation disorder alone which

makes only 1 eV. This is another justification of our microscopic mo-

del of the one-electron alloy potential. Supportive information for

different Te pseudopotential obtained in HgTe and CdTe can also be

found in literative. In the calculation of band structures of parent

compounds by using angular momentum dependent model pseudopoten-
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tial, different depths were assumed for the potential well of Te atom

which is associated with zero angular momentum 1=0." The purpose

was to generate more realistic band structures for both HgTe and

CdTe. In other band structure calculations by using the empirical ,

tight-binding scheme, different site-diagonal parameters of Te atom

has to be used in order to fit the calculated band structures well in

both parent compounds. 1'9"

Figure 3-7 shows the linear approximations of cation and anion di-

sorders for (Hg,Cd)Te. The q-O form factor is obtained again from

model pseudopotential as described in section 3.2. By the parameters

listed in Table 3-13 the second the third terms in the braces of equa-

tion 3.1, which are nonlocal effects, are also less tharn 20% of the

first term as in (AI,Ga)As. The model pseudopotential form factor

dVc(q=O) is well matched with other local empirical pseudopotential

form factors. The value of dVc(0) is about -0.002 Ry and the effect

of small variation in it will be discussed later.

3.5 BANDGAP BOWING IN (HG,CD)TE

with the same perturbative procedure, the second-order bandgap

shrinakage and energy corrections are summarized in Table 3-14 and

3-15 for x=0, 0.3, and 1.0. A 30o change in dVc(0) introduces an

error in final results less than 1%. The unperturbed states are spe-

cified by their band numbers shown in Figure 3-6. Numbers in par-

entheses include the estimated effect of spin-orbit interaction which

will be discussed later. The exclusion of spin-orbit interaction will r
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ntaffect the qualitative physics but makes the compuaton tractable.

The factor x(1-x) in equation 3.1 is not included in Tables. The

contribution from each group of energy bands to the second-order

energy shift in HgTe and CdTe are listed in Table 3-16 and 3-17 re-

spectively. The first thing to be discussed is the convergence test

for the number of energy bands used in computation. Within the 15

bands the contribution from the five top most bands to the second-

order energy correction is less than 10%. Their effects are less in

CdTe than in HgTe because their energy denominators are larger in

CdTe. Therefore, 15 bands are good enough for quantitative results

and smaller number of energy bands may be used for rough approxi-

mations.

In the semi-empirical determination of the extrinsic bowing in re-

ference 5, only the lowest conduction band and the upper three va-

lence bands are considered. This "two-band" model has also been

applied to study the compositional dependence of valence-band spin-

orbit splitting and conductive-band effective mass in alloy sys-

tems. em-mriaDetailed relations between the two-band model and rigo-

rous perturbation theory were investigated by Stroud."' The

Selectronegativity difference was related to an effective matrix element

in which all the matrix elements in equation 3. 1 were assumed to be

constant. This approach is analog to the approximation successfully

used in calculating the interband absorption of semiconductors. When

the matrix elements were taken out of the summation in equation 3.1,

the inverse band width parameter 1/A in reference 5 was related to
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the Hilbert transformation of density-of-states of conduction band and

valence bands. The assumption of constant matrix elements through-
out the Brillouin zone was later questioned by Altarelli in reference

93. It was shown that the constant effect could not be applied to

different conduction minima which have quite different symmetry

properties.

Table 3-18 shows that the "two-band" model (including bands 2, 3,

4, and 5) is very good for bandgap correction in CdTe. The accura-

cy is less than 1%. One possible reason may come from the cancella-

tion between band 1 and upper conduction bands as shown in table

3-16. The model overestimates the energy correction at x=0.3 for

about 8% and it underestimates the correction by 93% in HgTe. The

large error in HgTe is due to the inverted band structure and small

energy bandgap. In HgTe the 120) state interacts strongly with the

lowest valence band. Therefore, the "two-band" model is a good ap-

Proximation method for the bowing in alloy systems with direct energy

bandgap 1 eV or larger.

3.6 COUPLING MATRIX ELEMENTS IN (HG,CD)TE

The effects of cation and anion disorders on the coupling matrix

elements in equation 3.1 are discussed in details here in order to

show their physical significance and 'roles in bandgap bowing. Table

3-19 shows the intraband coupling between 150) state and 15k) states

in the lowest conduction band. (It is 120) and 12k) in the inverted

band of HgTe.) When compared to tight-banding interpretation of
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energy bands, 150) and 120) states are of the same symmtry proper-

ties of atomic S orbitals. It is noticed that the effect of cation di-

sorder is very distinct from that of anion disorder for conduction

* states. 1(501dVc ISk)l 2 is nearly constant throughout the Brillonin

zone and at least two orders of magnitude larger than

1(501dVA 15k)l2 The constant matrix elements show that the effect

* of dVC is a localized perturbation which can couple states with large

difference in k values. This is another evidence that our empirical

pseudopotential model is a good representation for cation disorder

which is the difference between chemical natures in the core regions

of two substituting atoms.

The large difference between the matrix elements of dV C and dVA

can be explained from the chargh distribution of 150) and 15k) states

(or 120) and 12k) states). Figure 3-8 shows the charge densities

near k=O for 120) and 150) in HgTe and CdTe respectively. They

are obtained from EP wave functions in reference 88 and the projec-

tion (110) plane is illustrated in Figure 3-9. The distribution of

state 150) is centered around cation and anion atoms which are closely

related to atomic S obitals. Figure 3-10 shows the total charge densi-

ties obtained from EP calculation for band 5 in ZnSe."

There is no total charge densities calculated for (Hg,Cd)Te system
and the charge densities obtained in ZnSe are good approximations.

They may not be exactly the same as in HgTe and CdTe but the simi-

larity should be great. The anti-bonding nature of 15k) states has

large portion of charge distribution in the area where the covalent
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bonding charge is nearly zero. Their interaction with dVA is negligi-

ble because dVA is derived from the redistribution of valence bonding

charges. The larger value of 1(20ldVc12k)l in HgTe comes from

the larger charge density of 120) state around H9 atom than that of

150) state around Cd atom as shown in Figure 3-8. This is consis-

tent with the trend in ionicity of parent compounds.

The effects of matrix elements on energy correction are directly

*~ shown in Table 3-16 and 3-17. The 150) is always pushed downward

by 15k) states or the 120) is pushed upward by 12k) states in HgTe.

The interband coupling between 150) With valence bands is large un-

der dVC and the energy shift depends on the energy denominator in

equation 3.1. With the same reason of small intraband coupling, the

interband coupling of 150) with valence bands is small under dVA ex-

pect with the lowest valence band Ilk) which has strong charge dis-

tribution around the anion atom as show in Figure 3-11. Their ef-

fects are also clearly shown in Table 3-16 and 3-17. (The interband

coupling of 120) state with P-like bands is similar.)

The intra-valence band coupling matrix elements are summarized in

Table 3-20. The variation of 1(401dVAI4k)l2 with respect to k va-

lues is slightly larger than that of 1(501dVcl5k)l But both of

them are always within the same order of magnitude. The spatial

variation of anion disorder is centered around the anion atom but not

as localized as the cation disorder. It is consistently with the physi-

cal origin because the chemical nature within the atomic core is more

localized than the charge redistribution effect. The relative magni-
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tude of matrix elements under dVC and dVA can be interpreted again

by the charge distributions of 140) and 14k) states. Figure 3-12

shows the distributions of 140) state in HgTe and CdTe. The bond-

ing nature of 140) state keeps the charge distribution oriented in

between adjacent atoms. The maximum of bonding charges shifts from

anion toward catron when x decreased from 1.0 to 0. This variation

in charge distribution can be related to the ionicity of the alloy which

varies from 0.717 of CdTe to 0.65 of HgTe. The ionicity scale of

Phillips and Van Vechtens" is used because it is in better agreement

with pseudopotential calculations" than the ionicity scale of Paul-

ing.' In CdTe the intraband matrix elements are larger for dVA

* than dVC because valence electrons are around the anior atom more.

In x=0.3 and HgTe the effect of dVC and dVA are comparable because

valence electrons move toward the cation atom for small x values.

The effects of matrix elements on the energy correction have to be

considered together with the energy denominator in which the band

structure and bandgap are dominant factors. The 140) state is al-

ways pushed upward but the amount of energy shift varies as a func-

tion of composition.

-8.2
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3.7 SPIN-ORBIT INTERACTION

All the results discussed so far are obtained without considering

the spin-orbit interaction. The values in the third row of Table 3-14

show a smooth variation over x. Linear interpolation is used to con-

struct a continuous curve of bandgap bowing in which the factor

x(1-x) is included. The unmarked solid curve in Figure 3-13 repre-

sents the experimental fit at 0°K. The dashed curve is the calculated L
bowing with both cation and anion disorders but not the spin-orbit

interaction. It is observed to be an overestimated one. It will be

shown that the spin-Orbit effect does not change the magnitude of

couping matrix element although it gives rise to different band struc-

tures. Consequently, the second-order energy correction is modified

by different energy denominators but not significantly.

From the symmetry considerations, the four-fold degenerate r,, lev-

el with the spin-orbit interaction can be approximated quite accurately

by pure spin states and X, Y, and Z functions. The latter! are the

-three-fold degenerate states 120), 130), and 140) at valence band

maximum without the spin-orbit effect. According to the symmetry

notatrons in reference 99, the expression of 8 states are

Uk -1-"-
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where u is the basis function of F8 state and SQ and I ) are pure

spin states.

The magnitude square of the coupling matrix element of a state

can then be reduced to that of X function alone, provided that

(n'k'dVIY) (n'k'IdVIX). The latter condition is satisfied in our

method because the cation and anion disorders have the same Td sym-

metry as the space lattice does. So the matrix elements obtained by

us are the same for real cases with spin-orbit interation. The only

correction needed to be done on our results is the energy denomina-

tors comimg from a different band structure. With the same equation

for the coupling matrix elements, the effect of spin-orbit interaction

on our results is estimated by neglected the contribution from one

heavy-hole band. This is an underestimate for the contribution from

the split-off band. The approximation should be good because the

split-off energy is about 1 eV for all compositions in (Hg,Cd)Te.

The estimated bowing is shown in Figure 3-13 by the marked solid

curve. It is mentioned in Chapter 2 that the band width of upper
three valence bands obtained in local empirical pseudopotential is

smaller by about 40%h than the real measured band width. The error

of our estimated spin-orbit interaction falls within this accuracy.

r..
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3.8 CONCLUSION

The model developed in Chapter 2 is used in a perturbative ap-

proach to study the effect of alloy fluctuation potential on energy

bandgap bowing in ternary alloy systems. Two important alloys

(AI,Ga)As and (Hg,Cd)Te are chosen as typical examples. The in-

trinsic bowing parameters within the virtual crystal approximation are

zero for both systems. The extrinsic bowing parameter obtained in

second-order perturbation has contributions from both cation and an-

ion disorders. Stationary non-degenerate perturbation equation is

used and the effects of possible degenerate states are discussed. No

numerical singularities will show up in the calculations as argued in

section 3.1. The summation of coupling matrix elements is carried out

over the lowest 15 bands at 88 points in the irreduable part of the

Brillouiu zone. Convergence test has been examined for the number

of energy bands. It is found that the contribution from the five top

most conduction bands is less than 10% of the energy correction in

general. Convergence test for the number of k points has not been

Persued because of expensive cost. From the agreement with experi-

mental data, the choice of k points is meaningful.

The validity of using perturbation approach is justified by the cri-

terion: 1>>(ME/BW) 2 • Where ME is the magnitude of coupling matrix

elements which is at most 0.3 eV and BW is an average band width of

at least 1 eV. The values of empirical pseudopotential model are cho-

Sen from previous publications. The standard is to have correct

band structures for parent compounds and have disorder potential as

-85-. ° ,, ,'I
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small as possible. Because of only a few known values for form fac-

tors obtained from band structure fitting, linear approximation is ap-

plied to construct a continuous dV(q) curve. The determination of

dV(q=O) is made on the atomic Model Pseudopotentials of different ca-

- tion atoms. Small variation in dV(O) does not affect the bowing par-

ameter at all. For the shape of dV(q) curve at large q values, a mo-

notonically decreasing tail is more meaningful than an abrupt zero

tail.

From the calculated extrinsic bowing parameter in (AI,Ga)As, anion

disorder plays the dominant role in it. The contribution from anion

disorder makes 90% of the total bowing. The anion disorder also con-

tributes 30% of the total bowing in (Hg,Cd)Te. Distinct. effects can

" be noticed from the coupling matrix elements under different disorder

potentials. They are related to the physical origins of disorders and

the charge distributions of corresponding electronic states. Clear

*~ -L Pictures of interactions between disorder potentials and band edge

states have been given in section 3.8. The effect of spin-orbit inter-

action on the final bowing is discussed. It does not change the ma-

trix elements but change the energy levels in perturbation equation.

Its effect is estimated for (Hg,Cd)Te by neglection the contribution

from one heavy-hole band. The error, 40% in total bowing, is within

the accuracy of the band width in local empirical pseudopotential

scheme.

Supportive evidence for different pseudopotentials of the same

atom in different parent compounds can be found in empirical tight-

-86-



binding parameters. However, due to different choices in tight-bind-

ing parameters, the common Te atom in (Hg,Cd)Te may be set to

have the same value of parameters. 3' Naturely the physical interpre-

tations of bandgap bowing in reference 36 are quite distinct from

ours. The differences are corresponded to the choice of parameters

not to any deviation in basic physics. If the site-diagonal parameters

of Te atom are chosen differently in two parent compounds, the in-

terpretations in reference 36 will be modified to be more consistent

with ours.

-87-
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Figure 3-2. The briljlouin zone of a face-center-cubic

lattice. Shaded region is the irreducible 1/4.8 part.
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Table 3-1. Empirical pseudopotential form factors of AlAs

in Rydberg.

G2  Al Al Al
(reference 37) (reference 65) (reference 66)

3 -0.148 -0.1475 -0.15

4 0.0625 0.0625 0.07

8 0.026 0.03 0.03

11 0.0625 0.0625 0.09

As As As

3 -0.292 -0.2925 -0.29

4-0.0625 -0.0625 -0.07
48 0.026 0.03 0.03

11 0.0775 0.0775 0.05
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Table 3-2. Empirical pseudopotential form factors of GaAs

in Rydberg.

.S'

G2  Ga Ga Ga r

(reference 37) (reference 67) (reference 68)

3 -0.159 -0.183 -0.16

40.06 0.035 0.05

8 0.0123 -0.005 0.01

11 0.07 0.078 0.07

As As As

3 -0.299 -0.307 -0.30

4 -0.06 -0-035 -0.05

8. 0.0123 -0.005 0.01

11 0.05 0.072 0.05

-91-



- :r -. . .. -.- o.-...r. - ..- r--.L.--."'. [.--,

. .. .

Table 3-3. Empirical pseudopotential form factors of .7

cation and anion disorders for (AlGa)As in Rydberg.

(reference 37)

G 2 dV cation dV anion

3 -0.011 -0.007

4 -0.0025 0.0025

8 -0.0137 -0.0137

11 0.0075 -0.0275

"* Table 3-4. Site-diagonal tight-binding parameters for

GaAs and AlAs determined by fitting to bulk pseudopotential

calculation. (from reference 72) Unit is in eV.

GaAs AlAs

Ess (cation) -2.254 -1.274

Epp (cation) 1.839 1.588

Ess (anion) -6.593 -6.150

* Epp (anion) 1.338 2.168

-92-
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Table 3-5. Atomic model pseudopotential parameters of Al.

Ga. and As atoms. -Energy is in double Rydberg (27.2 eV)

and length in Angstrom (A). (from reference 38)

Ga Al As

A0  1.44 1.38 2.71

Al 1.58 1.64 (3.08)

A2  1.41 1.92 (2.0)

RM 2.4 2.0 2.0

kF 0.8776 0.9276 1.0065

4F

V,



V- T- 7. 75. -

(Ry.) dv cation
(reference 37)

0.01

0

-0.01 dv cation

-0.02 dV 'anion /

-0.03

Figure 3-3. Linear approximations of disorder potentials

* for (Al.Ga)As.
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Table 3-6. Second-order shrinkage of the lowest direct

energy gap in *eV. Positive sign stands for larger bandgap

than the VCA value.

dV cation dV anion dV cation
(reference 37)

GaAs -2 -69 47.3
Total: -71

AlAs -17 -162 +1
Total: -179

Estimated -0.01 eV -0.115 eV +0.004 eV
extrinsic
bowing
parameter

Total: -0.125 eV
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* Table 3-7. Second-order energy correction of 140) and 150)

states in .eV. Arrows indicat, the directions of energy

shift with respect to the VCA energy levels.

dV cation dV anion dV cation
(reference 37)

GaAs 150) .13.5 45 t.3

140) .11.6 t15 415.0

AlAs 150) 118 v1,43 .14.3

140) 41 T19 15.3

-96-
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Table 3-8 *Contributions from various energy bands on

the shift of 140) state in Alks. Unit in meV. 4

Band Band Band Band
1 2,3.4 5 6-10

dV cation 0 ti 0 42

dV cation 0 0 0 J45
(reference 37)

dV cation 0 T20 0 44
(test)

on the shift-of 150) state

dV cation 0 t5 t36 4.4
t18

dV cation 0 t5 422 42
(reference 37)t1

dV cation 0 13O 4115 418
(test) t' 43
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Table 3-9. The effect of qzO form factor in cation disorder

* - on energy shift and bandgap bowing. Unit in moe

dV cation dV cation (test)

GaAs 150) 43.5 420

140) 41.6 'i

2AlAs 150) 418 t64

140) 41 115

Estimated -0.01 eV -0.05 eV
extrinsic
bowing
parameter
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Table 3-10. The effect of high q tail in the test cation

disorder on second-order energy corrections. Unit in meV.

Smooth tail Abrupt tail

14o) 150) 140) 150) * '-

GaAs Tl 420 t12 125

Total: -31 -37 1.

AlAs t1 5 ,64 t1 3 469

Total: -79 -82

Table 3-11. The effect of high q tail in the anion

disorder on energy shifts. Unit in meV.

Smooth tail Abrupt tail
140) 150) 140) 150)

GaAs 115 454 t'3 415

Total: -69 -18

AlAs t19 143 T4 441 p

Total: -162 -45

-99-
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test dV cation -.-
0.01 with abrupt tail.-.

"%'

0,

qh

W812 

16 2,'.

-0. Oldiv cation -..
-0.01

tedV cationdVca
-0.02 (tewt)iharpti
-0.01

So /

Figure 3-4. Solid curve is the cation disorder in our

model. Dashed curve is the test potential which is the

same as dVC except for 0Cq2 C3. Another variation in the

test potential is the abrupt high-q tail.
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GaAs x, mole fractionl of ALAS ALAS

31 -40
0.

* .1 -80

Figure 3-5. Bandgap bowing in (Al,Ga)As. Solid curve is

from theoretical calculation wiith both disorders. The

points are from measured values in reference 80.
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nd 3, 43,4

a nn d 222

(a) (b)

band 5

3,4

r\band 2

*~ Fgure 3-6. Schetch of band structures near k-0 for zinc-

blend semiconductors. (a) and (b) are for normal band

structure with small and large bandgaps respectively.

(c) is for the inverted band structure. Band numbers

are the same as in Figure 3-1.
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Table 3-12. The calculated slope of VCA bandgap by a

first-order perturbation calculation. The constant slope

is about 1.9 eV. Contributions from cation disorder and

anion disorder are listed in eV for four x values.

x dV cation dV anion

0.2 0.987 0.933

0.4 1.018 0.972

o.6 1.02 1.009

0.8 0.995 1.036

-.
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Table 3-13. Atomic model pseudopotential parameters of

Hg, Cd and Te atoms. Energy in double Rydberg (27.2 eV)

and length in Angstron ()

Hgr Cd Te

A0  0.97 0.88 3.04

Al 1.11 0.98 3.32

A2  0.85 1.11 (2.80) :
RM 2.6 2.6 2.0

kF 0.7213 0.7423 0.9209

FI



Table 3-1/4. Second-order shrinkage of the lowest direct

energy gap in .eV. Positive sign stands for larger bandgap

than the VCA value.

dV cation dV anion dV cation
(test)

HgTe -65 +21 -65

Total: -4/4

(Hg,Cd)Te -138 -224 -139
x=0.3

Total: -362

Estimated -0.3 eV -0.1/46 eV -0.299 eV
extrinsic
bowing
parameter

Total: -0.446 eV

-V

-106-

. . . ... . . . . . . . . . . ...



Table 3-15. Second-order energy corrections at conduction

and valence states at k0O in meV. Arrows indicate the S

directions of energy shift with respect to the VCA energy

levels.

X=0 X -0.3 X 1.0

40) 20) 50) 40) 50) 40)

AVG t124 t309 t151 t289 4147 t391

4 M.V.) (188) (t2681 (1130) (t118) (4155) (1198)

4 - - - -
:-

tV t27 16 t5S t 229 t 3 t 316

(rmv.) (1 6) (t6) (t5) (t 118) (t3) (t1159)

-17
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Table 3-16. The convergence test of the energy shifts 3

of band edge states in HgTe. Unit in meV. The numbers.

in last column represent their percentage in total energy

shifts.

Band Band Band Band Band
1 2 3,4.5 6-10 11-15

dVC 140) t1 T30 t283 454 6%

Total: t244

120) T28 t406 453 1,55 5%

Total: t309

dVA 140) 0 il t26 J.8 7%

Total: t27

120) t6 tO.2 40.1 10.2 2%

Total: t6
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Table 3-17. The convergence test of the energy shifts

of band edge states in CdTe. Unit in meV. The numbers

in last column represent their percentage in total energy

shifts.

Band Band Band Band Band

1 2,3,4 5 6-10 11-15

dVC 150) t9 V138 240 493%

Total: 114.7

140) t2 t4h20 45 121 1%

Total: T391

dVA 150) th3 0 0 0 0%

Total: 13

140) 0 t330 12 5 2%

Total: t316
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Table 3-18. The validity of two-band model is checked by

the energy shifts of band edge states.

x Two band Whole Error

HgTe 140) f$350 $271

120) t 353 t 315

Total -3 -44 underestimate 93%

x=0.3 150) t176 t156

140) 1t568 f 518

Total -392 -362 overestimate 8%

CdTe 150) 4102 1144

140) t743 t707

Total -845 -851 less than 1%1
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Table 3-19. Magnitude square of the intra-conduction

band coupling matrix elements.

I(2o dVc 12k)1 2  1(2oi dVA 12k) 2

HgTe 5x10 "3 - 7x10 "3  )> 5xlO 7 - Ix10 5

&,.-

I(5°dVc15k)1 2  I(5°IdVA15k)1 2

(Hg,Cd)Te 1.5x10 3 - 3x10 3  > 2x10 6 - 2x1O- 5

x=0.3
.3- -3

CdTe 1 .5x10 "3  3x10 3  )> 2x10 6 - 2x10 5

Table 3-20. Magnitude square of the intra-valence band

coupling matrix elements.

I(140ldVCI4k)12  1(40O1dVAI14k) 12

HgTe 1x10 5  4x10- 4  1x10 5 . 1x104

(Hg,Cd)Te lx10- 5  lx10- 3  lxlO- 4  3x10-4
x=O.3
CdTe lx10 " 5 - 4xI0 "  ( 1 Ix10 " - 4xI0 " .

, .1 ..

-'%
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Figure 3-8. Charge densities near k-0 for 120) state in

FfgTe and 150) state in CdTe (from reference 88).
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Figure 3-9. Location of atoms in the primitive cells.

A section of (iTO) plane is shown bounded by dashed lines.

*This bounded plane passes through both atoms A and B.

uThe extended plane passes through all of the atoms shown

in the diagram. Each atom has four nearest neighbors

bonded tetrahedrally (from reference 96).
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Znm

Figure 3-11. Charge density of the lowest valence band

(band 1) of ZnSe (from reference 96).

-115- p



TOP VALENCE BAND AND
BOTTOM CONDUCTION BAND
Near (0.010)

CdTe
TOP VALENCE BAND >Nowt A00.01

Cd 2

Figure 3-12. Charge densities near k0O for 140) state in

* HgTe and CdTe respectively (from reference 88).
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0.0 0.2 0.4 0.6 0.8 1.0

X, FRACTION OF CdTe

Figure 3-13. Bandgap shrinkage in (Hg,Cd)Te. Solid curve

is experimental fit at 0 0K. Marked dash curve -a-

is the calculated result without spin-orbit interaction.

Marked solid curve -~includes the estimated spin-orbit

effect. Both cation and anion disorders are included in

two theoretical curves.
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APPENDIX C

Chapter IV

ALLOY BROADENING

4.1 ENERGY LEVELS INSIDE THE BANDGAP

The energy level and origin of point defects in alloy systems is a

mystry by itself. We will concentrate in this chapter on the broaden-

ing of defect levels in the presence of the alloy fluctuation potentral.

* And a background review of the energy levels inside the bandgap is

first introduced. There is no allowed electronic state within the for-

bidden energy gap in a perfect crystal. Real crystals are never per-

fect and almost all applications of semiconductors are based on impuri-

ty effects rather than on the properties of the ideal crystal alone.

Deliberately added foreign atoms in small concentrations (1-100 ppm),

so-called dopants, can alter the physical properties of the material

. tremendously in a desired fashion. They may increase (or decrease)

the conductivity by many orders of magintude or increase the lu-

"minescence efficiency. Unintentional trace impurities and other lattice

imperfections in extremely tiny concentrations (less than 1 ppm) can

*l also affect the material quality considerablly - often uncontrollably

and in an undesired manner. All the imperfections can introduce en-

ergy levels within the band continumm and within the bandgaps. We

shall focus our disscussion only on the discrete energy levels caused

by point defects within the bandgaps.

-:-118- p
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In dealing with semiconductors it is useful to classify the defect

levels as shallow and deep. in the following we consider those defect

levels shallow which have values not significantly larger than those of

the conventional shallow acceptors and donors. Effective-Mass theory

provides an adequate description for their ionization energies and

wave functions." All other defects, having energy levels between

those of the shallow donors and accptors, are referred to as deep.

* In contrast to the shallow levels, the deep levels can have ionization

energies comparable with half the bandgap energy, E /2. Theoretical

understanding of them is not as complete as of shallow levels. Spe-

* * cial papers and detailed reviews describing the complexity of the sub-

ject and various mathematical approaches to its solution' are availa-

Experimental methods in defect study is breifly summarized here:

' (i) The standard semiconductor assesment techniques, resistivity and

Hall-effect measurements, are indispensable tools to establish the elec-

trical properties of shallow donors and acceptors. Their application

*i to deep level defects is considerably more difficult. (ii) Optical spec-

troscopy is one of the most powerful techniques for the identification

of shallow level defects. For two reasons luminescence has been less

"' - successful in deep-level research; the first one is the strong elec-

tron-phonon interaction and the second one is the lack of good photo-

detectors in certain wavelengths. (iii) Although its usefulness for

defect identification is limited, deep-level transient spectroscopy

(OLTS) technique yields information about all important electrical par-
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ameters of a deep trapping center. Other magnetic and nuclear type

measurements are also available in defect study. It is obvious there

is no single method that is capable of detecting all the desriable in-

formation about both shallow and deep defect levels in a perfect crys-

tal.

In alloy semiconductions previously described theories and experi-

mental techniques have been applied for defect assessment. Besides

the difficulties in crystal growth, an additional complication of defect

problem in alloy systems is the non-periodic one-election potential at

any fixed composition. Any discrete energy level obtained in the

VCA may be broadened statistically in the alloy due to the influence

of the alloy fluctuation potential. The experimentally observed alloy

broadening has been mostly deduced from optical measurements. This

effect on simple acceptors and donors will be studied by a first-order

perturbation calculation in the framework of Effective-Mass theory.

The effect on acceptor bound-exciton will be discussed later in de- 1.
tails.

4.2 BROADENING OF SIMPLE LEVELS

By simple level we mean that an electron or a hole is bound to a

single defect center. (AIGa)As and (Hg,Cd)Te are used again as

typical systems for illustration. The study on shallow levels in

(AI,Ga)As and (Hg,Cd)Te has been extensive in the past. The ioni-

zation energies of dopants and residual defects are usually deduced

from electrical measurements or luminescence data." °6'6' '
162 When

°.°
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the theoretical formula were fitted to experimental data in order to

extract the ionization energy, the shallow levels were always assumed

, to be discrete ones with their broadenings neglected. Although accu-

rate experimental information about the broadining of shallow levels is

difficult to obtain, we believe that the uncertainties, - 2 meV and - 3

meV, associated with measured acceptor ionization engergies in

(AI,Ga)Asl" and (Hg,Cd)Tel" can be related to the Vf. A quanti-

tative method of calculating the alloy broadening of shallow levels is

developed and tested in this section.

Because of the random nature of Vf, the shape of broadening is
assumed to be a Gaussian distribution. We shall calculate the root

mean square values of the statistical broadening by thb correlation

function of Vf in equation 1.2 and first-order perturbation theory.

* The impurity wave function in the VCA is expressed as the product

of an envelope function and the Bloch function at the corresponding

band edge.

where the total impurity wave funbction is normalized to unity in the

whole volume, the Bloch function is normalized to unity in a primitive -

" cell (this normalization of Bloch state is differant from that given in

*I bandgap bowing in Chapter 3) and the envelope function is normalized L

to the volume of a premitive cell. The Bloch function is obtained

from the local empirical pseudopotention band structure calculation in

-121-
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the VCA and the envelope function is obtained in the Hydrogenic-like I

Effective-Mass theory.

The root mean square of broadening can be obtained from

= 4Is jV.I"Yi~)

Iii x ~~l KICI X i >1+ -I<X ! dr^I X I ], C.2) .-i:!

where 11 is the volume of the primitive cell; Vf, dV C , and dVA are

defined as before.

Within the scheme of Hydrogenic Effective-Mass theory, the ground

state radius of a shallow level is obtained by

5O.3 /o o 4-)

where 0.53 is the Bohr radius in Angstrom, 6O is the static dielectric

constant of the semiconductor, and m is the effective mass at corres- L
ponding band edge. Equation 4.2 then becomes

-122-"% F
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The first factor in equation 4.4 gives the average probability of find-

ing an election or a hold in a primitive cell. The factor x(1-x)

* represents the variation of the average strength of vf due to compo-

sitional changes. The last factor in equation 4.4 is the microscopic

contribution of dV to the alloy broadening from one premitive cell.

With clear physical meaning for each term in equation 4.4, the broa-

denings of shallow levels in (Hg,Cd)Te are calculated as an illustra-

tive example.

Table 4-1 and 4-2 summarize the parameters for shallow acceptor

and donor levels in (Hg,Cd)Te respectively. The static dielectric

constant as a function of composition is obtained from the curve in

reference 3. A constant spherically averaged heavy-hole effective

mass 0.45 m0 is used for all compositions. The measured effective

mass of heavy-hole are 0.40 m for (100) direction, 0.49 m 0 for (110) 7
direction, and 0.53 m0 for (111) direction in reference 82. The m 0 -

stands for the free-electron mass. Their mathematical average 0.473

m is closed to the calculated spherical mass obtained from the Lut- "

tinger parameters in the same reference. The effective mass for elec-

tron as a function of composition is adapted from the k.p theory. .

Different energy band parameters used in the k.p calculation may in-

troduce variations in the root mean square value of donor states by

about 8% at x=0.48 and 11% at x=0.8. These uncertainties are not im-

portant because the broadening is too small for donor levels to be

determined experimentally.
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Table 4-3 and 4-4 list numerical values of the third term in equa-

tion 4.4. The matrix elements of dVC and dVA at band edges are

carried out by using 65 plane waves for the expansion of the EP

Bloch functions. The spin-orbit is neglected in this calculation. The

compositional dependence of matrix elements can be understood from

the arguments in section 3.6.

Figure 4-1 shows the calculated half width as a function of compo-

sition. Two solid curves are the broadenings of shallow acceptor and

donor states. Small numerical values for shallow donor states come

from the large donor radius which corresponds to the small

probability of finding an electron in a unit cell. The broadening of

acceptor states has a maximum of about 6 meV as shown by the solid

curve in Figure 4-1. It results from the oversimpled solution of the

hydrogenic-type effective-mass equation. In 4 more accurate equa-

tion, the impurity potential is screened by a position dependent die-

lectric function and not by a single dielectric constant."' The as-

ymptotic value of the dielectric function at large distance is that of

the static dielectric constant but its value for small distance ap-

proaches to unity. With the more accurate treatment in impurity po-.

tential, the acceptor ionization energy is about half value of the one

obtained in the hydrogenic-type approximation. Consequently the

hole radius is larger and the broadening is small. The maximum

broadening of acceptor states in the dashed line in Figure 4-1 is

about 3 meV. It is close to the experimental uncertainty in measured

acceptor ionization energies. "' The validity of the single-band ap-
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proximation in Effective-Mass theoty is checked by the following cri-

terion. I IT

where a is the lattice constant, Eimp is the ground state ionization

energy of the shallow impurity, and E is the bandgap of host crys-

tal. The value of equation 4.5 is less than 1% for x changing from

0.2 to 1.0.

To justify the neglect of spin-orbit interaction, a detailed calcula-

tion including the spin-orbit (SO) interaction is carried out for

x-0.48. The procedure is quite different from the 65 plane-wave

method used for the band calculation without the SO effect. Within

the total 113 plane waves used as expansion basis, 59 plane waves are

treated exactly and the rest 54 are taken into account through the

modified Lowdin perturbation scheme.""'" ' l 6  There are two ef-

fects from the spin-orbit interaction. The first one is in the VCA.

The spin-orbit interaction will modify the charge distribution of 140)

and 150) states and consequently change the matrix elements of di-

sorder potentials at band edges. The resulting changes of alloy

broadening due to these modifications of Bloch functions are less than

5%. The second effect is in the fluctuation potential derived from the

difference of the spin-orbit parameters of Hg and Cd atoms. This ef-
fect was found to be negligible. Since it is very expensive to include

these small effects, they are neglected in the calculation.
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Besides shallow levels, deep levels may also be broadening in the

alloy. The impurity wave function and ionization energy of a very .'.a

localized deep level is a complicated problem. If the wave function is

assumed to be given in the form of equation 4.1 and the envelope

function has the shape of hydrogenic IS orbital, the half width of al-

loy broadening can be estimated as a function of ground state radius.

The dashed lines in Figure 4-2 are obtained by using conduction band

Bloch functions, while the solid lines are from valence band Bloch

functions. The intention of this figure is to estimate the alloy broa-

dening of deep levels in (Hg,Cd)Te. Because the wave functions are

probably oversimplified, the results in Figure 4-2 should be inter-

preted with great caution. We feel that the results indicate an upper

bound of about 0.1 eV for the alloy broadening of deep levels in all

alloy systems.

4.3 EXCITONS IN ALLOY SEMICONDUCTORS

In many non-metallic solids, an electron and a hole may be bound

together by their attractive electrostatic interactions, just as an elec-

tron is bound to a proton. The bound electron-hole pair is called an

exciton. It can move through the crystal transporting excitation en-

ergy but it is electrically neutral. The internal structure of intrinsic

excitons has been studied in detail with much quantitative accuracy.

Precise knowledge of them is important not only by itself, but also as

the firm basis for further developments. The behavior of excitons in

the presence of other entities such as neutral impurities, trapping
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potentials, meterial boundary, photons, phonons, excitons or carri-

ers, etc. has also been under intensive investigation. 167' ' 161

In the photoluminescence study of point defects in semiconductors,

exciton may bound to varies impurities, defects, and complexes. The

subsequent decay from the bound state, recombination of the electron

with a hole, yields information concerning the center to which the ex-

citon was bound. Early photoluminescence investigations were primar-

ily centered on free-to-bound and bound-to-bound transitions such as

the so-called "edge emission" studies which gave rise to relatively

board emission. In the 1960s the effort shifted to more intensive stu-

dies of the sharp-line emission, aimed at identifying the

bound-exciton impurity transitrons and at achieving a better under-

i standing of the residual impurity and defect structure of semiconduc- L

tors, which have applications in the electronic industry. The mag-

netic field splittings of these sharp-line transitions make it possible to

differentiate between neutral and ionized donor and acceptor impuri-

ties. In conjunction with systematic impurity-doping experiments,

specific donor and acceptor impurities may be identified.

Transitions involving both free and bound excitons are observed in

alloy semiconductors in spite of the random crystal potential. Narrow

free-exciton peaks have been observed in the absorption spectra of

direct bandgap Ga(As.P). 1' As of the same reason discussed for L

shallow level broadening, the large Bohr radius of excitons in direct

4 bandgap alloy may cause the effect of alloy fluctuation potential small.

Bound as well as indirect excitons, on the other hand, may have a r
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much smaller radius and stronger broadening may be expected. Be-

* cause of the complicated nature of bound-excitons in alloys, different

anthors attributed different broadened lineshapes to exciton-phonon

interaction"' or the alloy fluctuation potential."', LiZ, 112, X-.

Quantitative calculations of the broadening due to the Vf are few.

Results from theoretical calculation of the alloy broadening in refer-

ence 43 by using the coherent-potential approximation were 10-20

times smaller than experimental data. A much better agreement bet-

ween theoretical and experimental values was obtained by using the

coherent-potential approximation in reference 28. In Ga(As,P):N al-

loys (1>x>0.6) the luminescence due to the radiative recombination of

nitrogen-bound-excitons is shifted toward lower energies with respect

to excitation spectra. This shift is attributed to the band broadining

generated by local disorder potential around nitrogen atoms. The

magnitude of half width of broadening has a maximun value about 35

meV which is consistent with the simple upper bound obtained in sec-

tion 4.2. The application of our model to the alloy broadening of

bound-exciton spectral line will be discussed in the next section.

4.4 BOUND-EXCITON RECOMBINATION LINE IN (HG,CD)TE

Recent photoluminescence experiment on (Hg,Cd)Te with x=0.48

reported an observation of acceptor bound-exciton recombination line
with a width of 6 meV. " Because of the very accurate experimental

measurement, it is taken as a quantitative test ground for the model

of the alloy fluctuation potential. The theoretical accuracy now de-
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ponds mainly on the correctness of impurity wave functions. The ac-

ceptor bound-exciton is a complicated four-body problem. There are

two holes and an electron surrounding a positive charge center. A

self-consistent scheme based upon the spherical model of shallow ac- Lk

ceptor" has been developed for acceptor bound-exciton." 1  We shall

not repeat the derivations here but use directly the formulations in

reference 41.

There are initial and final states for the bound-exciton recombina-

tion line. The root-mean-square of alloy broadening of the recombi-

nation line is defined as

E,~ = ( -E -( - (4. ):--:

where the bar represents an ensemble average, EI is the initial state

containing a neutral acceptor and a neutral exciton, and EF is the fi-

nal state which is a simple acceptor state. If only the first order

correction is considered, E and EF can be approximated as .- -
± f/I "Fj-(f)

Ff A ("A' I f I TO'A. fes(; f' sP.''r.Ei) "L.. ,2

TS Er TeSET4 B %'- S
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V -V .Laf
where A denotes the antisymmetrization operator for the two holes,

e,aBE nd '4'h,BE are the self-consistent electron and hole wave func-

tions of acceptor bound-exciton, and YA is the hole wave* fuction of

the neutral acceptor. The alloy fluctaution potential Vf is originally

defined for a valence electron in the one-electron approximation. If

must bear an additional minus sign for the positively charged holes.

Equation 4.6 is then approximated as

4E~ 1 O < ('e, SE IVj.I4'ctE ±2('fI TOO

-04 A W 4!4A)

< E ,. I vI TC,. + < " A

- 4-('r.efi V I t.R(4'A VfI*A) (.

Because of the large radius of electron wave function, the small in- .

teractions between NeBE' 'h,BE, and *A are neglected.

Each term in equation 4.11 is derived explicitly in Appendix A.

The input parameters needed for the self-consistent calculation of the i
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envelope functions are listed in Table 4-5. The use of the spherical

model is justified by the values of parameters. The results of the

spatial integration of envelope functions are listed in Table 4-6. The

length is normalized to the acceptor Bohr radius which is about 104

angstrom. The upper bound of integration is chosen as seven or ten

acceptor Bohr radius around where the magnitude of envelope func-

tion is nearly zero. The matrix elements of cation and anion disorder

potentials at band edges are summarized in Table 4-7. They are ob-

tained from the empirical-pseudopotential calculation in the VCA with

and without the spin-orbit interaction. The disorders are the same

as defined by Figure 3.6. The discripancy in matrix elements with

and without spin-orbit interaction has an effect less than 1096 in the

final root-mean-square of broadening. From the values in Table 4-8

the calculated root-mean-squre of broadening is 0.95 meV without the

spin-orbit interaction and 0.9 meV with the interaction. If only the

catron disorder pontential is included, the root-mean-square is about

0.37 meV. The anion disorder pontential contributes only 30% in the

bandgap bowing but is 60% in the alloy broadening. The reason is

that there are two holes in the acceptor bound exciton. They inter-

act more strongly with the anion disorder pontential which is derived

from the valence change redistribution. However, the calculated

full-width-half-maximum of 2 meV is only one third of the experimen-

tally measured 6 meV. There must be other mechanisms which may

also cause broadening to the bound-exciton recombination line.
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4.5 J-J COUPLING AND CONCENTRATION BROADENING

The multiplets of acceptor bound-exciton in perfect crystal have

been extensively studied theoretically and experimentally. "' The

hole-hole coupling is believed to be important for the multiplet struc-

tures. In the so-called "j-j coupling scheme", two holes of angular

momentum j=3/2 are comb-ined anti symmetrically to form J=0 and J=2

* states. (Small j here is the total angular momentum operator which is

written as F in Appendix A. Capital J here is not the effective spin

operator appeared in appendix A). According to atomic theory, in

which the j=3/2 states are formed by the spin-orbit interaction bet-

ween a P electron and its spin, the energies of the J=2 donblet

should be lower than the J=0 singlet. The existence of the doublet

J=2 states is due to the breakdown of sphrical symmetry in the srys-

tal. For the shallow acceptor bound-exciton in the VGA, the J=2

states are indeed lower in energy than the J=0 state as the same in

atomic case.

* To investigate quantitatively the j-j coupling of the two holes in

the bound-exciton, the effect of bound electron is neglected for

simplicity. By using the techniques of multiplet theory for atoms, it

can be shown that the J=2 states are the ground state of the model

Hamiltonian and the energy separation from the J=0 state is given by

252
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where fOh and g0h are defined as before and ra (rb) is the smaller

(larger) of r1 and r2 . The reason of this splitting is due to the mu-

tual scattering of the two holes between S-like and D-like orbitals.

It is interesting to note that the mutual scattering between D-like or-

bitals makes no contribution to the j-j splitting in this case.

The calculated value of j-j splitting in the VCA by using the self-

consistent fo and go functions is about 1 meV. The full-width-half-

maximum of the bound-exciton recombination line is then estimated by

an addition of two Gaussian distributions with AE=0.9 meV respective-
ly, separated by 1 meV. The calculated full width is 2.8 meV which

is about half of the experimental data. Experimental results of

Ga(As.P):N case demonstrated the possibility of detecting the combi-

nation of two Gaussian distributions separated by j-j splitting in opti-

cal spectrum. ""' Although the j-j splitting in this case resulted from

the interaction between an election and a hole, the situation of two

holes should be in principle the same. From the experience of calcu-

lating the j-j" splitting in compound semiconductors, however, the

theoretical value is always an overestimate to the experimentally mea-

sured splitting."" Therefore, the 3 meV alloy broadening including

the effect of j-j splitting should also be an upper bound of theoretical

• "prediction.

Because of the small electron effective-mass, the radius of *YeBE.

is very large. The interaction of a neutral bound-exciton complex

with nearest neutral acceptors due to the overlap of impurity wave

functions may cause the recombination line to be further broadened.
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The theory of this "concentration broadening" derived in reference 42 S

is briefly summarized in Appendix B. A quantitative calculation is

carried out for N A=1x1 1 6 cm of (Hg,Cd)Te ; x=0.48. The most

important contribution from the envelope functions in concentration

broadening is the decaying tails at large distance which may have

nonzero overlap. In order to have simple equations, the tail of f0 (r)

is approximated by an decaying exponential function with proper nor-

malization constant. The D-like g0 (r) is neglected in the calculation.

The parameters describing the decaying tails are dI=2.32, 0=0.5,

1-3.47 in one over length for *h, BE' 'Ve, BE and 41A respectively.

The length is in acceptor Bohr radius which is 104.25 A. The varia-

tions of 10 (R), 11(R), and J0 (R) as functions of distance R are plot-

ted in Figure 4-3. JI(R) is neglected because it is so small. The I _

transition energy E(R) is plotted in Figure 4-4 and the full-width-

half-maximum of concentration broadening for NA=]xO16 shown in
15 1

Figure 4-5 is 0.73 meV. The full width for NASXl0 and 2.5x10 16

-3
cm are 0.3 and 2 meV respectively. Concentration broadening alone

can not explain the observed width in the (Hg,Cd)Te samples.

With the correlated alloy and concentration broadenings the root-

mean-square value of a Gaussian distribution is 0.97 meV which is

determined by

U

* £~ =&E AEAIO + "e9% t *6AI
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The total calculated full width of bound-exciton recombination line is

only 3 meV taking into all possible considerations. Carefully worded

in the original paper was there also a macroscopic broadening effect

due to the inhomogenuity of the sample. The possible macroscopic

broadening in the bound-exciton measurement due to the size of ex-

citing laser spot is about 2 meV. The upper bound of the theoretical

broadening is then 5 mev which is in good agreement with the experi- L. .

mental value.

4.6 CONCLUSION

The roles of simple defect levels and bound-exciton states in alloy

semiconductors are briefly described together with the experimental

assesment techniques for defect levels. The problem of determining r.

energy levels and physical origins of various point defects in perfect

crystals is by itself intricate. It becomes even more complicated in

alloys because of the existence of the aperiodic alloy fluctuation po-

tential. When the effect of Vf is added to the VCA results, a dis-

crete level in the virtual crystal bandgap may be broadened into a

continuously distributed energy band. The reason of this statistical L.

broadening comes from the sampling of local fluctuations in potential

by the bound carrier around the defect center. Carefully measured

values of the broadening can serve as good probes for the existence

of the Vf.

If the defect level is deep within the energy bandgap, the bound

carrier will be strongly localized around the defect center. The sam-
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pling of Vf is emphasized by the large probability of finding the car-

rier in a unit cell and correspondingly the alloy broadening is signifi-

cant. However the ground state wave function of a deep center is

difficult to obtain quantitatively. Instead our investigation on alloy

broadening starts from the shallow impurity level of which the broa-

dening is considerably small. The reason of relative value of alloy

broaneding of shallow and deep levels can be given by simple argue-

ments. The impurity wave function obtained in the VCA is approxi-

mated by an effective-mass type solution. It is expressed as a pro-

duct of an envelope function and a Bloch state at the corresponding

band edge. The Coulombic impurity potential is screened by the

static dielectric constant of the host alloy. The Bloch states at band

edges are used to compute the matrix elements of the disorder poten-

tial in a unit cell. The envelope function is used to calculate the

probability of finding the bound carrier of the center in a unit cell.

The root-mean-square of broadening in first-order is related to the 12
combined effects of the matrix element of Vf and the probability at

any fixed composition. The more. localized a level is, the larger the

alloy broadening it has. And it is found that the accuracy in impuri-

ty wave function is the most important factor in determining the broa-

dening.

The calculated half-widths of alloy broadening in (Hg,Cd)Te with

x between 0.2 and 1 are shown in Figure 4-1. The trends in matrix

elements of dVC and dVA at band edges are similar as discussed in

section 3.S. They can be interpreted by the physical definitions of

13
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disorder potentials and charge distributions of Bloch states. The

maximum broadening of shallow acceptor level obtained in the Hydro-

genic Effective-Mass theory is about 6 meV. But with the more accu-

rate wave functions obtained in the spherical model of shallow accep-

tor, the maximum broadening reduces to about 3 meV which is close

to the uncertainty in measured acceptor binding energies. 1'' -1-

The root-mean-square of broadening of deep levels is roughly estimat-

ed by an oversimplified effective-mass type envelope function. We

believe that the upper bound of alloy broadening for a very localized

level is 0.1 eV. When compared with the 0.03 eV broadening of the

deep isoelectronic N center in Ga(As,P), the simple prediction is a

good one."'

Accurate measurements on bound-exciton photoluminescence spectra

suggested a 6 meV full-width broadening in (Hg,Cd)Te with x=0.48.

The experimental uncertainty due to the macroscopic inhomogenuity in

samples is about 4 meV. The remaining with of 4 meV should be the

intrinsic property of the sample. The calculated full-width due to the

-fluctuation potential with very accurate impurity wave functions is

about 2 meV. The wave functions are obtained in a self-consistent

scheme in which the realistic valence band structure is included.".

Besides the effect of VfV other possible mechanisms are all consid-

ered. Due to the very small electron effective-mass in (Hg,Cd)Te,

there may be interaction between a neutral acceptor bound-exciton

complex and nearby neutral acceptor. This so-called "concentration

broadening" is calculated by the dominant binary interaction of over-

-137-
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lapping impurity wave functions. It is only 0.8 meV for the sample

doping. The half-width of broadening of the two correlated mechan-

isms is still 1 mev.

Another mechanism which can cause fine structures in the acceptor .

bound-exciton ground state configuration is also investigated. The

interaction of the two holes in the acceptor bound-exciton may intro-

duce a split in ground state energy which is similar to the "j-j split-

ting" in atomic theory. Two holes of total angular momentum j=3/2

can form J=0 and J=2 states in the ground state configuration within

the VCA. The energy separation between these two states in

" (Hg,Cd)Te with x=0.48 has an upper bound of 1 meV. If each level.:..

of the fine structure is broadened independently, the recombination

line-shape will be a superposition of two broadened distributions.

There is experimental evidence for this type of broadening in lu-

minescence spectrum."' The theoretical value of broadening with all

the considerations is about 75% of the experimental value. It is a

good indication for the correction of our model of the fluctuation po-

tential.

13
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Table 4-1. Parameters of shallow acceptor levels in

(Hg,Cd)Te. The hole effective mass is 0.45 m0 and not a

function of x.

x Dielectric constant Acceptor radius (A)

0.2 17.3 20.4

0.32 15.9 18.7

0.4 15.4 18.1

0.48 14.2 16.7

0.6 13.2 15.5

0.7 12.3 14.5

0.8 11.8 13.9

0.9 11.0 12.9
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Table 4.-2. Parameters of shallow donor levels in

(HgCd)Te. All equations are from reference 10/4 in which

the static dielectric constant was wrong.

Me p * 2 2
me 3- g Eg

p2 =18 + 3x (eV)

E = 1.79x -0.26 (eV)

A =1. 00 0. O24x (eV)
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Table 4-3. Magnitude square of matrix elements at valence

band edge in (HgCd)Te. Unit in eV.

X dV cation dV anion -

0.2 7.784 X 10- 2  0.2228

0.32 5.76 x 10-2  0.2318

0.4 4.121 x 10-2 0.2372

0.48 2.856 x 10- 2 0.2425

0.6 1.44 x 1O-2 0.2495

0.7 6.561 x 10-3  0.255

0.8 1.936 x 1 " 0.2,1"

0.9 8.1 X 10"5  0.2652
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I Table 4-. Magnitude square of matrix elements at

conduction band edge in (Hg,Cd)Te. Unit in eV.

x Cation disorder Anion disorder

0.2 1.649 3.025 x 1-

10.32 1.56 2.25 x 10-6

0.4 1.491 1 x 10-6

0.48 1.421 9 X 10-6

0.6 1.30 2.5 x 10-5

0.7 1.192 4.9 x 1-

0.8 1.08 6.4 x 10-5

*0.9 0.964 8.1 x 10-5
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Figure 4-2. The alloy broadening versus the.radius of
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Table 4-5. Material parameters of (Hg.Cd)Te; x=0.48 for

the spherical model (from reference 82).

bandgap =600 meVk

Luttinger parameters of valence band

rL =13.85

r2L 537

r L =6.17

u =0.845 1

static dielectric constant z1.4.2

acceptor Bohr radius =104.25 AL

acceptor Rydberg =4.865 meV
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Table 4~-6. Spatial integration of envelope function for

bound-exciton recombination line in (Hg,Cd)Te; x=0.48.

4 o7 Ifohl'r dr =0.609

1 I2 0=9hl d 0.0117

f~J7 12Oh 12 2

..... Ifoh f0 IjgQo 2r dr = 0.042
4 IT

1 JJ IAIr dr = 1.458
4-ff

I. f0  O1 4r2dr =0.0251

4 7r

1 f0o 72 12I 2r dr =0.0912

BE.- 12r2 ~f~j 0 dr 3 .0762 x_0

4 7w

-146-



Iuh o h o g o i d r 0 .0
41..

.4.'



-I%
-°__- |

Table 4-7. Matrix elements of cation and anion disorders

at conduction and valence band edges in (Hg,Cd)Te; x=O.48.

Numbers in parenthesis are the value for the microscopic

contributions of dV at band edges.

(4 vIdVcI4 V) ($vIdVAIV) ( cJdVcI C) (JcIdVAI1C)

Without
spin-orbit -0.153 0.985 -1.175 -0.006
interaction

(0.266) (1.381)

With
spin-orbit -0.224 0.857 -1.194 -0.031
interaction

(0.234) (1.426)
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Table 4-8. Numerical values of each term in equation

4.12. Unit in eV.

Term Without With
spin-orbit spin-orbit
interaction interaction

first 6.292 x 10-8  6.496 x 10O8

(6.292 x 10-8)I

second 1.166 x 10-5 1.028 x 10-5

(1.029 x 0

third 6.918 x 10o6 6.079 x 10o6

fourth -1.773 x 10 ~ -1.561 x 10-5

(-1.562 x 10-6

broadening 0.95 meV 0.9 meV

(0.37 meV)

(Numbers in parenthesis are with only dV cation.)
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APPENDIX D

Chapter IV

MOBILITY OF HG 1 xCDxTE NEAR ZERO BAND GAP

4.1 INTRODUCTION

The two zinc-blende compounds HgTe and CdTe form a continuous

series of alloys HglxCdxTe, where x is the mole fraction of CdTe in

the alloy. The alloy system has been of great interest in recent years

because of the wide range of its physical properties. The alloy system

is a mixture of a semimetal (HgTe) with a semiconductor (CdTe); the

energy gap Eg in this alloy system varies continuously from -0.3 eV in

HgTe to 1.6 eV in CdTe. The zero .gap alloy is occured at x = 0.164

at 4.2K.

The continuous variation of band parameters with composition x has

caused a great deal of interest in its electrical and optical properties.

Recently there have been many workers investigating the properties of

Hg1 xCdxTe or its applications. One of the most important applications

of HglxCdxTe materials is for infrared dectors'". The alloy can-

make photodiodes. W.W. Anderson' has investigated the band-to-band

tunneling and impurity-to-band tunneling ion-implanted n on p

HglxCdxTe photodiodes. Also this alloy has been used in tunable las-

ers. In the next section, some structural and optical properties of

this material are briefly introduced.
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Hg1 xCdxTe has shown unusually high electron mobilities$ (,( 107

cm 2 /V • s). Recently, J. Bajaj, S.H. Shin, G. Bostrup and D. T.

Cheung of Rockwell International Science Center " have observed the

maximum electron mobility occured near 40K for near zero band gap

Hg, xCdxTe (x Z 0.16). In this chapter we will mainly discuss the
-x

mechanisms for these observations. It is also shown in Figs. 3, 6 and

7, theoretically and experimentally, that the maximum mobilities occured

in Hg 1 xCdxTe at the composition of zero band at fixed temperature

and electron concentration (n), especially for low temperature and low

n. In general, one would expect the mobility to reach *a maximum near

the cross point, because the density of states at the Fermi level exhi-

bits a minimum.

Since the alloy, HglxCdxTe, has so many different features and we

are so interested in the transport properties, in this chapter we will

discuss the properties of Hg 1 xCdxTe and its mobility phenomena at
~/-1-'

near zero band gap.

"- -4--

i -- 4

@131

Figure 6: Theoretical and experimental composition dependences of electron -I
mobility in Hg1 .CdxTe mixed crystals with the following electron

-_x -
COncentrations: n=2x10" cm -1, n=2x10 1' cm' and n=9xlO "  cm-, at 4.2K,

(curves 1-3, respectively), reported in Ref. (31).

15
-1 5 4 -- -" "
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*I - - -

I

Figure 7: Experimental and theoretical dependences of electron mobility in

Hg1  Cd x Te at 77 and 300K for samples with the following electron

concentrations: 6x10 cm- and 2x10 cm-", reported in Ref.(31).

4.2 GENERAL FEATURES AND PARAMETERS

As mentioned in the previous section, Hg1 xCdxTe has an energy

gap , Eg, which varies from -0.3 eV to 1.6 eV. The Eg is the

energy difference (Eg > 0 for normal semiconductor structure, EgA0 for

inverted band structure). The band structure, whose dispersion rela-

tion was given in chapter III Eq.(45), for different x are shown in Fig.

8. We can see from the curves in Fig. 8 that if Eg is very close to 0

zero the conduction band is a V-shaped non-parabolic band, which is

different from the cases of large IEgg. Also when Eg Z-0, from
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Eq. (46) we can see the non-parabolic parameter is very large, and from

Eqs. (47) and (48) we can see the effective mass at the conduction band

edge m*e is very small as shown in Fig. 9.

What is the relation between Eg and x? There are many researchers

working on this problem. Five different representations which are de-

scribing the Eg in terms of x and T are listed below

(1). Ref. (35) -3

-0. .30 ---xbo + I 457o-T X 0 X ,3)

(2). Ref.(36) V

E=-o,3oZ +. % -f- 5r.35 (10

(3). Ref. (37)

(4). R.ef (38)

-0-3"3 173 t

(5). Ref.(39)

Fig. 10(a) shows the five different Eg versus x curves at 4.2K. Fig.

10(b) shows the temperature and composition dependences of the energy
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gap and the long-wavelength limit A. of Hg1 xCdxTe from Ref.(39).

The left-hand ordinate is the forbidden energy gap expressed in elec-

tron volts, whereas the right-hand one is the corresponding absorption

edge wavelength or photodetector long-wavelength limit. The data il-

lustrate that the composition Hg 0 T9 5 Cd0 . 2 0 5 Te is the proper choice for

an infrared detector operating at 77K having an energy gap of 0.1 eV

(long-wavelength limit of 12.4 )im). The temperature dependences of

the intrinsic carrier concentration with composition as an independent

parameter is illustrated in Fig. 11". The non-parabolic conduction

band was used in the calculation. It is shown that the smaller the x,

the higher the intrinsic carrier concentration at fixed temperature. .-.,

Fig. 12 depicts longitudinal and transverse phonon frequencies as func-

tions of composition at 77 and 300K?. The LO and TO frequencies were

deduced by Kramers-Krong analysis of reflectivity measurements.

The method to calculate the transport properties of non-parabolic

band HglxCd Te has been described very clearly in chapter III by

using the variational technique. There are some parameters used in the 12

calculation of Hg~x CdxTe, listed in Table 2 of Ref. (31), which have

been worked out quite accurately from many workers (refer to

Ref. (31)).
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r I

2; A a2.2

V.A

-0.2 LA -.

* Figure 8: Band structures near r~ for HgTe, CdTe, and two alloys near the
semimetal -semiconductor transition region. The band strt ztures extend from r,

* to IkI:O.18(2t/a) in the A and A4 directions.
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Figure 12: Longitudinal gMansverse phonon frequencies in Hg.x CdOe we77(',C) and 30K(09,0). -

-.. 4.3 RESULTS AND DISCUSSION.-,

In this section we will discuss the results of mobility from Rockwell
International Science Center"' , It was shown that the maximum mobility .-"

occured near 40K for H90 8Cd lTof u - near cross point as shown in Figs.-..,

13, 14. To calculate the mobility and temperature relation, we stared L-2-

by finding the Eg, M* and 0( , which are functions of T. Once we "

have those data, we can calculate the Fermi level, which is found from ..

the charge neutrality equation

t NA P +No (13T)
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where n and p are the electron and hole concentration respectively, and

NA , ND are acceptor and donor concentrations. ND  has been assumed

to be temperature independent, because donor states are not virtual

bound states, so that electrons in donor states are unlocalized. In other

words, these electrons are always in conduction band states, leading to

a total ionization of the donors at zero temperature. So we set ND n

at 4.2K. After we had solved the Fermi levels, we used the variational

principle formulated in chapter III to solve the mobilities for tempera-

ture from 4.2K to 300K. To explain the experimental data in Ref.(40),

we would like to make some corrections on it. At very high tempera-

ture, such as 300K, samples are already intrinsic. According to our

calculations from the charge neutrality equation, we found out the com-

positions of Hg 1 xCdxTe for sample #81 was about 0.165, and for sam-

pie #82 and #83 were about 0.17. The following calculations were based

on th. compositions we found.

For low electron concentration n -1014 cm- 3 , we found the most im-

portant scattering mechanisms are impurity scattering and polar optical

phonon scattering. Therefore, we found the mobility vs temperature,

shown in Fig. 15, which was pretty close to the experimental data in

Fig. 13 for temperature higher than 50K. For very low temperature,

mobility drops as temperature cools down in experiments. From our

calculations we found the results can not be explained by impurity scat-

tering. Up to now from a survey of other works, all of them have ob-

served the same low temperature phenomena but no one has provided a

satisfactory explanation so far. Therefore, we believe the low tempera-

-16'
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ture mobility properties must be a consequence of some other scattering

mechanism.

We investigated the neutral impurity scattering contribution. We

found, for near zero gap material, at very low temperature, tempera-

ture variation causes the effective mass to change abruptly, due to

non-parabolicity effect, and offsets the increase due to neutral impurity --

scattering shown in Fig. 13 as temperature varies in the 4.2K - 40K

range.

We believe the low temperature phenomena is due to resonance scat-

tering effect. It is believed that a number of Hg vacancies remains

after annealing HglxCdxTe. And the. experimental evidences of reso-

nant acceptor states were reported in HgTe and Hg 1 xCdxTe -"".

Ref.(41) gives the activation energies of EAl of the resonahce Al as a

function of the energy gap Eg as shown in Fig. 16, which can be plot-

ted as Fig. 17 by setting the zero energy at conduction band edge to

express the location of resonance level. Because no EAI data available

to us for energy gap greater than 10 meV, in our. calculations, we use

EA by interpolating from Fig. 17. The relation can be expressed ap-
At°

proximately by the following linear equation:

r "- .-.

'--165- • % .g-

. 1 ... ° .-
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We believe the acceptors are double acceptor mercury vacancies" '.

From helium spectrum" as shown in Fig. 18, we believe the resonance

energy, defined by Er is the energy between ground state Is and

higher levels. The most important resonance occurs between is and 2s

states. Er is shown in Figs. 16, 17 as a function of energy gap Eg;

the ionization energy for helium is about 1.25"E . In our model, we
r

assume the energy of acceptor level EA is about 1.25-Er or 1.50.Er ,

which give pretty good agreement of electron concentrations with exper-

iments.
- 1016 cm 3 . "

Assume the acceptor concentration is 1.0 x 1 cm From charge

neutrality equation we solved the Fermi energy. Ef, EA and Er are

shown in Figs. 19 and 20 for EA 1.25.Er and EA = 1.50Er respec-

tively. It is very interesting to see the energy difference betwen Ef

and Er. We believe if the energy difference IEf - Erl is less than

about 1 meV the resonance scattering occurs. What does the 1 meV

difference energy come from? We believe it comes from the thermal en-

ergy. Since the resonance level is a function of energy gap and there

is no existing data of E for energy gap greater than 10 meV, and asr
there are at least five different expressions of energy gap as we men-

tioned earlier in this chapter, we think 1 meV is only approximated.

One way to look at the resonance scattering, which we believe might be

valid, is that resonance scattering occurs whenever the energy differ-

ence between Ef and Er is less than the thermal energy. It is also

very interesting to see the fact that resonance scattering occurs below

45K for all the samples. Therefore, we believe resonance scattering

-166-
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dominates at low temperature 4.2K -45K and which causes the mobility

to drop as the temperature is lowered. Ii

107~ 100 1017O ':.

Hgl..xCdXTe 0481)
xn0. 16

46

_ a II
I-2.

%T I

E 0_1- 10.1 i
U z -

E I-
CaJL

0 A H* 0
cc2.j

z o 1OS 10* 1S cc
0
cc U

U

£x =0.16

100 101 0

TEMPERATURE (OK)

Figure 13: Electron Hall mobility, carrier concentration and resistivity as a
function of temperature in Hg 0 . 4Cdo 1 To.
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Figure 14: Electron Hall mobility and carrier concentration as a function of
temperature for three different Hgl1 'xCdxTe samples with X=0.16.
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Figure 15: Theoretical results of electron mobility asa function of temperature
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Figure 16: Experimental variations of the resonance energy Er as a function of
the energy gap Eg. rhe zero energy is defined as the topo th vaence
band.

SM Sc

1 

2

Figure 17: Energy difference between the resonance level and the bottom of the
conduction band as a function of the energy gap Eg for Hgl xCd xTe alloys
according to the results reported in Fig. 16.
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i Figure 18: The experimental energy levels of helium. The scale on the left* represents ionization potential in electron volts. The numbers next to the
levels are the wave number corresponding to the ionization potential, expressed

in units of I0 cm " . The dotted lines represent the energy levels of hydrogen

(nuclear charge = Z-1 = 1).
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Figure 19(a): The temperature dependences of EA, Ef and Er on EA=1.25*E r
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The sample is 081 in Fig. 14.
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Figure 19(b): The temperature dependences of EA, Ef and Er on EA=1 25*Er
The sample is #83 in Fig. 14.
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4.4 CONCLUSION

Impurity scattering and polar optical phonon scattering are the two

most important scattering mechanisms in Hg1 xCdxTe. For low electron

concentration and narrow band gap Hg1  CdxTe at very low tempera-

ture, resonance scattering may play a significant role in the mobility-

decrease phenomena.

We found that if the energy difference between Fermi level and reso-

nance level is less than 1 meV, resonance scattering occurs which low-

ers the mobility value. It can also be noticed that resonance scattering

is important at low temperature only. Most people think of the mobility -

as reaching a maximum value near the cross point, zero band gap, be-

cause the density of states at the Fermi level exhibits a minimum. But

from our investigation we conclude that it is not always true. We be-

lieve the maximum mobility is due to the starting point of resonance

scattering, which lowers the mobility value. Once resonance scattering

is reduced, the mobility will be dominated by impurity scattering again

even at very low temperature. This phenomena was observed by C.

Finck, etc., in Ref.(42). They have seen a dip in mobility at low

temperature Ti of Hgl.xCd xTe shown in Fig. 2 of Ref. (42). But away

from T1, even higher or lower temperature range, the mobility is high-

er than the mobility at Ti. That is because the resonance scattering 4

dominates at temperature close to TI and impurity scattering dominates

at other temperature ranges. . .. ,
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